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Abstract

In recent years, we witnessed a speeding development of

deep learning in computer vision fields like categoriza-

tion, detection, and semantic segmentation. Within

several years after the emergence of AlexNet, the

performance of deep neural networks has already

surpassed human being experts in certain areas and

showed great potential in applications such as medical

image analysis. The development of automated breast

cancer detection systems that integrate deep learning

has received wide attention from the community. Breast

cancer, a major killer of females that results in millions

of deaths, can be controlled even be cured given that it is

detected at an early stage with sophisticated systems. In

this paper, we reviewed breast cancer diagnosis, detec-

tion, and segmentation computer‐aided (CAD) systems

based on state‐of‐the‐art deep convolutional neural

networks. The available data sets also indirectly de-

termine CAD systems' performance, so we introduced

and discussed the details of public data sets. The chal-

lenges remaining in CAD systems for breast cancer are

discussed at the end of this paper. The highlights of this

survey mainly come from three following aspects. First,

we covered a wide range of the basics of breast cancer

from imaging modalities to popular databases in the

community; Second, we presented the key elements in

deep learning to form the compactness for methods

https://orcid.org/0000-0002-4495-3749
https://orcid.org/0000-0002-3327-0440
https://orcid.org/0000-0003-4713-2791
https://orcid.org/0000-0002-4870-1493
mailto:shuihuawang@ieee.org
mailto:yudongzhang@ieee.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22622&domain=pdf&date_stamp=2021-08-20


mentioned in reviewed papers; Third and lastly, the

summative details in each reviewed paper are provided

so that interested readers can have a refined version

of these works without referring to original papers.

Therefore, this systematic survey suits readers with

varied backgrounds and will be beneficial to them.

KEYWORD S

breast cancer, CAD systems, deep learning, systematic review

1 | INTRODUCTION

Breast cancer, one of the common cancers diagnosed among women worldwide, has become
the second leading cause of cancer death narrowly after lung cancer.1–3 The situation is even
worse for females in the UK, where new breast cancer incident cases registered in 2017
reached,4,5 accounting for 15.1% of all cancer cases.6 Mammography has been proven to be one
of the most effective techniques to detect breast carcinoma in the early stage.7 With mam-
mography screening, radiologists are considerably assisted in finding tumors in mammogram
images with smaller sizes and more randomness in locations. It has been shown that mam-
mography can detect main early symptoms such as microcalcifications and masses, reducing
the death rate of breast carcinoma by around 15%.8 To facilitate the diagnosis of breast cancer,
experts in the computer science community have developed useful computer‐aided design
(CAD) systems during the past decades. Those CAD systems can be mainly categorized into
three classes including segmentation, detection, classification regarding their application tasks.
However, many CAD systems, which can be referred to as traditional CAD systems, heavily
rely on manually crafted features and thus significantly impairs the overall performance. Also,
the robustness of these systems, which means the performance of these systems on new data,
remains to be improved.

The situation was mitigated by the advent of deep learning. The concept of deep learning, or
deep convolutional neural networks (CNNs), arose to the public when AlexNet9 achieved
exceptional performance on image recognition challenges.10 Deep‐learning methods are based
on representation learning, where representations are from multiple levels. At each level,
nonlinear but simple modules are combined to transform the representation from the lower
into higher levels, where the lower‐level features are more intuitive while the higher‐level
features are abstractive. Feature examples of ResNet18 can be seen in Figure 1.11

As can be seen from Figure 1, early features are more intuitive as they are edges‐like while the
features in the second convolutional block showed more complex patterns. Similar patterns can
be found in features produced by deeper layers. Complex functions, therefore, can be learned
with the composition of the transformations. Compared to traditional machine‐learning methods,
one characteristic of deep learning is that less human intervention is required for similar pattern‐
recognition systems. Given the above advantages, deep learning turns out to be capable of solving
problems with complicated structures and high dimensions from the domains of business, sci-
ence, and government. In traditional fields such as image recognition,12–14 speech recognition,15

deep learning has predominantly outperformed traditional machine‐learning methods. While in
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other areas where traditional machine‐learning methods have never been applied before, deep
learning remains the surprising performance in fields such as natural language under-
standing,16,17 and language translation.18,19 Benefited from the fast development of deep learning,
the deep‐learning‐based CAD systems outnumbered the traditional CAD systems by a large
margin. The number of the publications in recent five years also witnessed the speeding devel-
opment of the area, which can be seen in Figure 2.

While it is a speeding developing area, systematic reviews on the developed methods are lagged.
In the survey work,20 Debelee et al. reviewed the deep‐learning‐based works on image level and
histopathology level. The reviewed topics included segmentation, classification, feature extraction,
prediction, and detection. However, the related deep learning background is missing. In another
work,21 Abdelrahman et al. provided a balanced review work that included some basics of deep
learning and corresponding applications of deep learning. Nevertheless, the edge‐cutting techniques
of deep learning are missing while the application can be further extended. To mitigate the situation,

(A) (B)

(C) (D)

FIGURE 1 Visualized features in different depths of ResNet18 [Color figure can be viewed at
wileyonlinelibrary.com]
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we aimed at providing a comprehensive review that covers the latest development in deep learning
and the applications of the newly developed techniques in the diagnosis of breast cancer. The
remainder of this paper is arranged as follows. In Section 2, we will emphasize the most popular
breast imaging modalities and mammographic breast databases because imaging modalities directly
determine the image resolutions and qualities. As a result, image modalities indirectly determined the
potential performance of CAD systems. The breast databases provided a fair platform for algorithm
evaluation. The size and rations between different categories in the databases may interfere with the
final performance of algorithms. To catch up with the latest development of deep learning, we will
have a brief introduction to basic and novel components of deep learning in Section 3. As ab-
normalities are the main symptoms of breast cancer, therefore we will take detection of abnormalities
as the entry point for breast cancer detection. In Section 4, we will briefly review the abnormality
classification system before the prevalence of deep learning. Section 5 and Section 6 will introduce the
detection and segmentation work implemented by deep learnings, respectively. Later on, we will
discuss the remaining challenges and future trends in breast cancer in Section 7. And this paper ends
up with a conclusion in Section 8.

2 | IMAGING MODALITIES AND DATABASES

Imaging modalities are of great significance for image‐based CAD systems as the quality of
images provided by these modalities directly determine the speed, accuracy, and therefore, the
overall performance of CAD systems. In this section, we will review and summarize the
popular imaging modalities for breasts. The obtained images by different types of equipment in
different modalities contribute to numerous data sets, which are usually used for training and

FIGURE 2 Publications on the application of deep learning in breast cancer in lastest 5 years [Color figure
can be viewed at wileyonlinelibrary.com]
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evaluation of the developed deep learning models. Considering this, some introduction to go‐to
data sets is amended here for compactness.

2.1 | Imaging modalities

Imaging modalities are the starting point of the detection of breast abnormalities. The quality of
imaging by different techniques may have a profound impact on the performance of detection.
In breast screening, there are the following commonly used imaging technologies. Notably,
metrics including sensitivity, specificity, recall rates, positive predicted value, F‐score, accuracy,
and AUC are used to measure the performance of these imaging technologies.20

Screen‐film mammography (SFM) is a standard imaging modality for the detection of
suspicious lesions at an early stage. SFM showed high sensitivity (100%) of abnormality de-
tection in breasts mainly have fatty tissues. But for breasts with dense glandular tissue the
sensitivity decrease dramatically. As a result, breast cancers that cannot be visualized take up
from 10% to 20%. The film acts as the medium of image acquisition as well as displaying and
storage. One drawback of this imaging technique is that no image improvements can be carried
out once the film is produced. Some produced images inevitably suffer from lesser contrast,
which requires the patients have to go through another imaging procedure and thus expose
themselves to more radiation dose. Besides, the main problem with SFM is that it cannot be
digitalized.

Digital mammography is also another important imaging modality that is important and
effective for early‐stage breast cancer screening.22 However, low specificity is featured as one of
the limitations. Consequently, a large number of unnecessary biopsies are carried out, which
leads to a waste of healthcare resources and stress on patients. Like SFM, patients may have to
undergo multiple times digital mammograms (DM) and undertake the risk of ionizing radia-
tion that could endanger patients' health. However, DM has the advantage over SFM in that it
can be digitalized so that CAD systems can be utilized to improve the radiologist's sensitivity.

As the second choice to DM, ultrasound (US) is another widely used imaging modality,
though operator‐dependent, for breast lesion detection and differentiation. It is shown in Shin
et al.23 that ultrasound achieved promising performance on detection and discrimination of
benign and malignant masses. Unwanted biopsies, therefore, can be reduced by US imaging
modality. Compared to other imaging modalities such as DM and digital breast tomosynthesis,
the US is an alternative imaging modality that is safe, low‐cost, accurate, and highly universal.24

However, the interpretation of US images is not straightforward, therefore requires in‐depth
knowledge of image features. Considering the US's benefit, US has been recommended to be a
supplement to DM due to its safety and low cost.

Magnetic resonance imaging (MRI) produces a strong magnetic field that forces protons in
the target organ to align with the field so that sensors can imaging the tissues and organs. It is
used for high patient risk and clinical monitoring and diagnosis of breast cancer. An enhanced
form of MRI named dynamic contrast‐enhanced (DCE)‐MRI can extract valuable information
by providing higher volumetric resolution, which presents better lesion localization. Studies
have shown that DCE‐MRI is a useful tool for breast prognosis, diagnosis, and correlation with
genomics.25 In contrast to other imaging modalities, MRI has higher sensitivity of breast cancer
diagnosis while DCE‐MRI has a high sensitivity for cancer detection, even in dense breasts.26,27

However, MRI is not the best choice among all imaging modalities due to its expensiveness and
lower specificity.
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With the development of imaging technology, three‐dimensional (3D) imaging techni-
que has become a demanding technique. As a typical representative of the 3D imaging
modality, digital breast tomosynthesis (DBT) can produce 3D images of the breasts at dif-
ferent angles but uses low dose X‐rays20 that the X‐rays dose is similar to that of a regular
mammogram. In the process of image acquisition of DBT, breasts are placed in the same
position, and images are compressed in the same way as a mammogram while the difference
lies in that the X‐ray tube moves in a circular arc way around the breasts.28,29 However,
compared to traditional mammography, DBT requires less time for imaging while better
detail of dense tissues in the breast can be presented.30,31 Therefore, DBT has been a newly
emerged breast cancer imaging modality that improves the accuracy and sensitivity of
detection of breast cancer.28,32 However, DBT has its limitations. One is that malignant
microcalcification could be missed if they were not on the DBT slice plane.33 The recall
rates for architectural distortion also increase.34 As images are presented in 3D, it takes
longer to interpret DBT slices compared to DM. The summary of the imaging modalities
mentioned above is given in Table 1.

Although there are numerous breast cancer screening methods, DM is recognized as the
most effective method for early detection of breast cancer.35 For this purpose, we focus on the
mammographic databases used in the community.

2.2 | Objectives of databases

To build a mammogram database, some basic information about mammograms should be
provided, such as multiview and ground truth (GT). Generally, each breast has two recordings
from a craniocaudal (CC) view, a top to bottom view, and a mediolateral oblique (MLO) view in
mammographic imaging. Besides, breasts can be imaged from both the right‐side and left‐side,
which therefore contributes to four mammograms from different sides and views regarding one
breast. Examples are given in Figure 3.

TABLE 1 Breast imaging modalities

Modalities Abbreviation Advantages Disadvantages

Screen‐film
mammography

SFM High sensitivity for
breasts with fatty
tissues;

Low sensitivity for breasts with dense
glandular tissue; Does not allow
image improvements;

Digital
mammography

DM Can be digitalized; Low specificity; Repetitive
examination;

Ultrasound US Safe, low‐cost, accurate,
and highly
universalize

Specific knowledge required for
understanding

Magnetic resonance
imaging

MRI Higher sensitivity Expensiveness and low specificity

Digital breast
tomosynthesis

DBT Better details; reduced
imaging time

Increase of recall rate; Longer
interpretation time.

Abbreviations: DBT, digital breast tomosynthesis; DM,digital mammograms; MRI, magnetic resonance imaging; SFM,
Screen‐film mammography; US, ultrasound.
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Images can be printed into X‐ray film or stored as digital mammography (Figure 3). After
examining by radiologists, abnormal findings in mammograms were categorized into one of six
categories according to the breast imaging report and data system (BI‐RADS) scale, a stan-
dardized mammographic report system developed by the american college of radiology (ACR).
The six categories are Category 1, negative (no findings); Category 2, benign findings; Category
3, probable benign findings; Category 4, suspicious anomaly; Category 5, highly suggestive of
malignancy; Category 6, proved malignancy by biopsy. Exams that are not conclusive are
classified into the incomplete category that will be generally exempted from clinical usage.
Breast composition tissue, another important characteristic referred to by ACR, has four
categories ranging from low density (Category 1, fatty tissue) to high density (Category 4, dense
tissue). Therefore, the GT, which was proved to be the correct category of the lesion with
locations and boundaries, should be accessible. Additional information such as age, previous
biopsies can also be useful for studying breast cancer in that more nonradiographic information
would contribute to a higher performance CAD system.36

For easy storage and utilization, digital mammograms are usually saved in digital imaging
and communications in medicine (DICOM) format. One good feature is that images and
metadata can be acquired from one single file. Another popular format is eXtensible Markup
Language (XML), designed for convenient storage and data transportation.

2.3 | Public databases

In the breast cancer area, there are several popular databases. Though some of them may fail to
meet all of the requirements, they do profoundly contribute to the advancement of breast
cancer research.

The Mammographic Image Analysis Society Digital Mammogram Database (MIAS),37 the
most classical database, is still extensively used. Compared to contemporary databases, the
resolution is reduced to 1024 by 1024 pixels, and the database itself is no longer maintained. In
total, there are 161 cases, leading to 322 digitalizedMLO images stored in the format of portable
grey map file format (.pgm). The findings include normal, benign, and malignant. The normal

(A) (B) (C) (D)

FIGURE 3 Mammograms in different views
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type accounts for the majority of the database. Breast density is provided but not classified
regarding ACR standards. Only when its usage for CAD classification increased, it was then
determined to classify the set of mammograms according to the standard. A high percentage of
spiculated masses is provided. However, the percentage of benign findings is elevated according
to some research.38 The annotation of MIAS is given by the center and radius of a circle around
the center. Various studies have pointed out several drawbacks of this kind of annotation. The
annotation itself is insufficient that manual segmentation has to be conducted.39 Besides, the
digitalized mammogram's resolution hinders the detection of microcalcification (MCCs).40 As
GT contains more healthy tissue than lesion tissues, calcifications are not considered in some
studies.41

The BancoWeb LAPIMO Database,42 a more recent database, contains 320 cases providing
1473 images from multiple views, including CC, MLO, and magnification. Just like MIAS, three
types of sample images that are normal, benign, and malignant are given. Registered users can
access the database at http://lapimo.sel.eesc.usp.br/bancoweb/. BI‐RADS annotations, together
with patient information, are accessible. Textual descriptions of all of the findings are available
but annotations, as shown in the form of regions of interest (ROIs), only exist in some of the
images.

Magic‐5,43 an Italian database set up in 2002, contributes 3369 images to the community.
Those images, which were digitized with a resolution of 12 bits and saved in DICOM format,
are coming from multi‐view including MLO, CC, and lateral. Similar to MIAS, GT is given by
the centers of masses and MCCs and the circles around the regions of interest. Patient age is
approachable as additional information but no BI‐RADS categorization while density classifi-
cation is not provided in the form corresponding to ACR standard. The limitation of Magic‐5 is
the heterogeneity because images are collected in different environments.

INbreast,36 which has 410 images in total, contains six categories of findings: normal,
calcification, masses, asymmetries, multiple finding, and architectural distortions. This data-
base provides a substantial number of mammograms with calcifications and multiple findings.
Another prominent characteristic of INbreast is the careful annotation provided by specialists.
Unlike most of the databases that provide circles around the ROI, pixel‐level contours sur-
rounding lesions are allocated. When a cluster of MCCs appears, an ellipse enclosing the cluster
is given. The XML format is used to store information of ROIs and related information of
patients such as family history, ACR breast density, and BI‐RADS classification distribution.

Digital Database for Screening Mammography (DDSM),44 a relatively more significant da-
tabase of 2620 cases, provides the community with a powerful resource. Given the large scale of
the database, DDSM has been widely used since it was released in 1997. According to BI‐RADS,
information such as patient age, mass shape, mass margin, calcification distribution, and breast
density is offered. Metadata is given in the form of.ics file that includes the above information.
GT validation and ROI annotations further boost the popularity of the database. However,
images of the database are saved in a nonstandard compression way while decompression code
has not been updated for modern devices. The positions of abnormalities provided are too
general to form a precise segmentation, making the evaluation of CAD algorithms more dif-
ficult. Also, researchers pointed out that some ROI annotations are questionable,45 where
suspicious regions are not shown in the image. With consideration to the problems mentioned
above, Rebecca et al. cautiously selected a subset of DDSM named Curated Breast Imaging
Subset of DDSM (CBIS‐DDSM).46 This database selects 753 calcification cases and 891 mass
cases from the original DDSM data set after removing questionable images and refining the
ROI annotations. For better evaluation of algorithms, images with masses and calcifications in
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the database are split into the training set and testing set, in which 20% of the cases are
partitioned, respectively.

The OPTIMAM Medical image Database (OMI‐DB) is a large repository containing over
2 million digital mammography images.47 To construct the repository, images are collected
from numerous sites while normal, benign, and malignant images are selectively collected from
three sites. In total, there are 2,889,312 images from 173,319 women, among whom 154,832,
6909, 9690, and 1888 are found with normal breasts, benign findings, screen‐detected cancers,
and interval cancers, respectively. For screen‐detected cancers, experienced radiologists
annotated 7143 lesions by indicating attributes such as the location and area of lesions.
Additionally, relevant tags such as screening history, biopsy results are also extracted for a
searchable index. Besides the databases mentioned above, some databases are not widely
used.4,42,48 Detailed characteristics of different databases can be seen in Table 2.

3 | DEEP LEARNING

The development of the neural network can be chronologically divided into four periods:
enlightenment (1890–1969), trough (1969–1982), resurgence (1982–1986), and the current new
era (1986 to now), as can be seen in Figure 4.

The initial effort towards artificial intelligence can be dated back to the 20th century. In
1943, McCullocah and Pitts49 first came up with the idea that propositional logic can explain
neural events and the relationships between them. This study was recognized as the seminal
work for artificial neural networks (ANNs). The perceptron,50 which was considered the first
ANN in a strict sense and triggered broad interest in the community. However, the upsurge
retreated because the perceptron's limitation, as pointed out by Minsky, is being unable to solve
nonlinear problems.51 After this assertion, no significant breakthroughs were made during
the following years (trough period), which would be the winter for ANNs. What rejuvenated
the research interests of ANNs is the proposal of a recursive ANN termed Hopfield neural
network in 198252 and then the concept of deep learning comes to the public.

Regarding the learning pattern, deep learning can be subdivided into supervised models and
unsupervised models. Supervised models mainly include traditional ANNs, CNNs and re-
current neural networks (RNNs), where CNNs are generally used to cope with array‐like data
and RNNs are more efficient in dealing with sequential data. Compared to ANNs, the com-
ponents of CNNs are not simply the counterpart in ANNs but also pooling, flattening that
shrink the dimensionality of features extracted by CNN blocks. Unlike ANNs and CNNs, RNNs
rely on a special unit named long‐term memory (LSTM) to extract temporal information. The
typical architectures of the three types of models can be seen in Figure 5.

Supervised models are trained with cautiously annotated data. However, available anno-
tated data sets tend to be quite limited under some situations while not all models have to be
trained in a supervised pattern. Therefore, unsupervised models that correspond to un-
supervised learning pattern also plays an important role in deep learning. Unsupervised models
can be further subdivided into self‐organizing maps (SOMs), Boltzmann machines, and auto-
encoder. SOMs are usually deployed for feature dimension reduction as the output dimension
is always reduced to 2. Compared to Boltzmann machines, restricted Boltzmann machines
(RBMs), which is the basic component of deep belief networks (DBNs), are more popularly
used for feature reduction. Also, autoencoder is another popular deep learning model for
feature reduction. However, as CNNs are predominantly used in the area, we will shift our
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focus to CNNs of deep learning. Interested readers are suggested to follow work.53 Between the
supervised learning models and unsupervised models, there are also semisupervised models
including generative networks and attention mechanisms. The generative networks, such as
variational autoencoders (VAEs) and generative adversarial networks (GANs) are actively

FIGURE 4 Development of neural network [Color figure can be viewed at wileyonlinelibrary.com]

(A)

(B)

(C)

FIGURE 5 Typical schemes of ANN, CNN, and RNN models. (A) General ANN artitecture, (A) general
CNN artitecture, and (C) general RNN artitecture [Color figure can be viewed at wileyonlinelibrary.com]
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deployed for data augmentation in mammogram data sets. The attention mechanism, as a novel
technique introduced into classifiers, pushes the classifiers towards only necessary features in
the images.54

In this section, we will introduce the supervised deep learning models including CNNs,
fully convolutional neural networks (FCNNs). Usually, CNNs are deployed as classifiers for
classification tasks while FCNNs are employed as semantic segmentation models for seg-
mentation tasks. We aimed at a systematic survey paper here, so we believed there is a
necessity to introduce the details of these two kinds of networks. Besides, both of them play
important roles in breast disease CAD systems, a detailed illustration would be helpful for
readers with different backgrounds to understand the paper. We end up this section by
introducing some state‐of‐the‐art applications based on deep learning as we would like to
show a broader side of deep learning instead of restraining it on the application of breast
diseases only.

3.1 | Convolutional neural network

As the most commonly used models, convolutional neural networks are the cornerstone of
deep learning. Generally, CNNs consist of layers for convolution, activation, pooling, and fully
connection, among which convolutional layers are of most significance. Convolutional layers
are responsible for extracting features from images or feature maps produced by the previous
layers to form new feature maps. A set of weighted windows, named filters or kernels, are
sliding over feature maps to implement convolution in convolutional layers. When the filters
convolve through local regions in feature maps, the weighted sum is calculated. An example of
convolution can be seen in Figure 6. It is worth noting that all elements in the feature maps
share the same filters in each channel while the receptive field refers to the size of the input
perception range when calculating the convolutions. For traditional convolution, the receptive
field equals the size of kernels.

where H, W, C respectively correspond to the height, width, and the number of input
channels in the previous layer while and H', W′, C′ are the counterparts of the output. Stride S
is defined to specify the step of sliding windows when sliding through feature maps. Given the

FIGURE 6 Convolution [Color figure can be viewed at wileyonlinelibrary.com]
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size of filters DF, DF, FC, FC′ corresponding to the height, width, channels, and the number of
groups, respectively, the following mathematical relationships can be inferred:

H
H D

S
′ =

−
+ 1F (1)

W
W D

S
′ =

−
+ 1F (2)

C F′ = C′ (3)

C F= C (4)

The weighted sum's feature maps are then passed to activation layers, which are units of
nonlinearity activation functions such as ReLU.55 The role of pooling layers in CNNs is to
merge similar features into one and reduce the computational cost.56 Pooling layers provide
reliable motifs by coarse‐graining the positions of features when relative positions of the fea-
tures vary. Typical pooling units include Maximum pooling and Average pooling. Maximum
pooling computes the maximum of the local patches of feature maps while Average pooling
computes the average. Another important role of pooling layers is to reduce the dimensions of
feature representation by neighboring pooling, where a unit takes the input from patches with
columns and rows regularly left out. Convolutional layers, activation layers, and pooling layers
are generally stacked together as a block which can be repetitive components to extract more
high level but more abstract features for fully connected layers. More details about these layers
will be given in the following sections. The general architecture of CNN is shown in Figure 7.

3.1.1 | Convolutions in CNNs

As one of the popular convolution techniques, group convolution was first introduced in
AlexNet to solve the memory crash problem during network training. In group convolution,
input feature maps are divided into different groups where they are convolved by different
convolutional filters. The output feature maps are acquired by stacking the output after con-
volution. As it was initially proposed to solve issues of memory limitations, group convolution
has been removed from most of the state‐of‐the‐art networks thanks to the advancement of
hardware. As pointed out in ShuffleNet,57 multiple stacking of group convolutions weakens
networks' representations (Figure 8), as features are only generated from fractions of previous

FIGURE 7 General architecture of CNNs [Color figure can be viewed at wileyonlinelibrary.com]
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channels. To resolve this in light‐weighted networks, ShuffleNet proposed a novel two‐stage
convolution block. In the first stage, depthwise separable convolutions,58 which will be in-
troduced in detail later, are used in the group convolution to reduce the parameters. After
convolution, the intermediate feature maps are shuffle to result in final output feature maps.
Figure 9 shows the procedures involved in the ShuffleNet unit.

In traditional convolutions, the receptive field is restrained by the size of kernels. Larger receptive
field usually means more learnable parameters as well as more complicated models. Effectively
enlarging the receptive field of filters in convolutional operations without introducing extra para-
meters, dilated convolution, or Atrous convolution, has been widely used in the CNNs.59 In a 2D case,
given the ∈Xinput m n× , convolutional kernel ∈W a a× (a is generally an odd number while
≪a m n, , “≪” means much smaller), and the output ∈Y m n′× ′ then:

⋅ ⋅ Y i a j a X i r c j r d W c d[ + /2][ + /2] = [ + ][ + ] [ ][ ]
c

a

d

a

=1 =1

(5)

r is the stride of convolution. Therefore, the size of the receptive field is determined by the
stride r and the size of kernels. The size receptive field S has the following relationship with r
and a:

FIGURE 8 Group convolution [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 ShuffleNet convolution unit [Color figure can be viewed at wileyonlinelibrary.com]
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S a a r= + ( − 1)( − 1) (6)

Compared to traditional 3 by 3 convolutional kernels that give the same size of the receptive
field, a 3 by 3 dilated convolutional kernel gives a 5 by 5 receptive field when the stride r is 2
(Figure 10). However, the number of parameters is only 9 while it is 25 for a standard con-
volutional kernel to give the same size receptive field.

Along with the development, the design of the light‐weighted for mobiles has also become a
new focus. Depthwise separable convolutions are introduced to build lightweight models to
embed deep learning models into portable devices like mobile phones.58 Compared to tradi-
tional convolution, the proposed depthwise separable convolution has a lower computation
cost. Figure 11 shows the convolutional operations in the depthwise separable convolution.

FIGURE 10 3 by 3 dilated convolution with different strides. Each kernel consists of one central element
and eight surrounding elements while the distance of surrounding elements to the central element varies when
stride r changes. When the stride r is 1, the dilated convolution kernel is as same as the traditional 3 by 3
convolution kernel [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Depthwise separable convolution. Features maps of size H ×W×C are first convolved by the
filters with size DF × DF × 1 × C, which gives the resulting feature maps H' ×W′ ×C. The second group of filters
with size 1 × 1 × C are used to maintain the height and width of the feature maps while changing the number of
channels from C to C′
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For traditional convolution in Figure 6, the total computational cost is:

D D C H W C× × × ′ × ′ × ′F F (7)

However, the total computational cost for depthwise separable convolution is:

D D C H W H W C C× × × ′ × ′ + ′ × ′ × × ′F F (8)

A reduction rate of computation can be denoted as:

R
D D C H W H W C C

D D C H W C
= 1 −

× × × ′ × ′ + ′ × ′ × × ′

× × × ′ × ′ × ′
reduction

F F

F F

(9)

That is:

R
C D

= 1 −
1

′
−

1
reduction

F
2

(10)

The reduction rate is determined by the number of output feature maps and the size of
filters, which implies meaningful reduction can be achieved when proposed C′ and DF is
chosen. By introducing a fire module in Iandola et al.,60 the proposed SqueezeNet achieved
AlexNet‐level accuracy while the number of parameters is more than 50 times fewer than
that of AlexNet. The details about the fire module are shown in Figure 12. The variants of
convolutions are shown in Table 3.

FIGURE 12 Fire module in SqueezeNet. The size of feature maps is firstly squeezed by 1×1×C× C0
(C0 < C) filters. Then two filters with different sizes are convolved with resulting feature maps in the first step to
extend the channels of feature maps to the expected C′. Depth concatenation is applied to concatenate two
groups of feature maps obtained through the two different filters. The height and width of the input feature
maps and the output feature maps are the same while there are more channels in the output feature maps.
However, Maxpooling is used in SqueezeNet to shrink the height and width of the output feature maps
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3.1.2 | Pooling

Pooling is commonly used in CNNs for feature reduction and prevention of overfitting. As
the location of the input is precisely recorded by stacking convolutional layers, limited
representation can be learned. Also, abundant features can be extracted by convolutional
layers with multiple kernels. However, information abundance slows the computation and
increases redundancy. Therefore, pooling is introduced to retain the most important fea-
tures in the feature maps when down‐sampling and compressing the extracted feature
maps. In pooling layers, unlike the parameters in convolutional layers that are learnable,
the parameters are usually fixed instead. Besides feature reduction, pooling is also well
known for its spatial invariance that translation, rotation, and scale will not significantly
change feature maps.

Max pooling and average pooling are two representative pooling operations. For max
pooling, the maximum value from a local region of each feature map is selected as the most
representative feature preserving texture features. Average pooling averages elements in a
local area of each feature map and passes the averaged value as it is believed that overall
information can be better preserved by average pooling. To produce feature maps with
smaller sizes, the stride for pooling is usually greater than 1. However, overlapping
pooling, where the stride is smaller than the kernel size, is also commonly used to produce
feature maps with more information. Global pooling is another widely used pooling
technique. Unlike other pooling layers that downsample patches of the input feature maps,
global pooling down samples each feature map into a single value instead. Global pooling
can summarize the presence of features in the images and sometimes can be an alternative
to fully connected layers to transform feature maps to output predictions for the classifi-
cation models. Depends on the rules of calculation, global pooling can be subdivided into
global average pooling and global max pooling that are quite similar to average pooling and
max pooling but with only single values as the output. Stochastic pooling,61 which chooses
activation based on the probability distribution in local areas, is another alternative to
commonly used max pooling and average pooling. It was claimed that stochastic pooling
could be used to avoid over‐fitting and reduce test errors.

A rank‐based pooling was proposed by Shi and others,62 in which activations in pooling
regions are ranked before performing pooling operation. Based on the ranked activations,
three derived pooling methods including rank‐based weighted pooling (RWP), rank‐based
average pooling (RAP), and rank‐based stochastic pooling (RSP) can be implemented when
corresponding weighting strategies applied. The rank‐based pooling proposition was based
on the observations that the ranking list would remain unchanged, though activation

TABLE 3 Variants of convolutions

Name Stride Groups Dilation rate Features

Normal convolution 1 1 1 Basis

Strided convolution ≥2 1 1 Reduce computional costs

Grouped convolution Flexible ≥2 1 Parameters reduction

Dilated convolution Flexible 1 ≥2 Larger receptive field

Depthwise separable convolution Flexible ≥2 1 Parameters reduction
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values would change in a pooling region, contributing to more robust pooling performance
and thus better performance of CNN models. Ordinal pooling, a novel pooling scheme that
arranges a pooling region's activations in a sequence, was proposed recently in Kumar.63

Different weights are assigned to activations regarding the order of activations in the
sequence while these weights are learned through a standard gradient‐based training.
The pooling operation is then performed by summed activations that are multiplied by the
weights. The proposed pooling scheme performs a hybrid behavior between the average
pooling and max pooling in a differentiable manner. As indicated by the experiments in
Kumar,63 networks equipped with different pooling operations within pooling layers would
be more advantageous. The proposed ordinal pooling facilitates the training process and
eases the issue of choice between max pooling and average pooling. The summary of
different pooling methods is given in Table 4.

3.1.3 | Activations and fully connected layers

The activation function is introduced into CNN for nonlinearity. In practice, data is not usually
linearly classifiable. For CNN‐based classifiers, the performance would significantly decrease if
no nonlinear activation units were introduced into the classifiers. Sigmoid function and Tanh
function are the two most popular activation functions in early neural networks. The sigmoid
function could be expressed as follows:

Sigmoid x
e

( ) =
1

1 + x−
(11)

where e stands for the natural number. The sigmoid function is introduced as the activation
function because it is smooth and differentiable (Figure 13). However, one main shortcoming

TABLE 4 Pooling methods

Name Stride Strategies Features

Max pooling Equals to
kernel size

Select maximum activations Preserve texture feature

Average pooling Equals to
kernel size

Average activations Preserve background
information

Overlapping pooling Less than
kernel size

Usually, select maximum
activations

Better representation

Global pooling No Summarize features into
single values

Stochastic pooling Equals to
kernel size

Select activations based on the
probability distribution

Prevention of over‐
fitting

Rank‐based pooling Equals to
kernel size

Select activations based on the
rank of activations

More robustness

Ordinal pooling Equals to
kernel size

Select activations based on the
order of activations

Facilitate training
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brought by it is the gradient vanishing as networks going deeper. Besides, the sigmoid func-
tion's output is no longer zero‐centered and therefore changes the distribution of input.
Tanh function, which mitigates gradient vanishing to some extent and centers the output to be
zero‐centered, can be written as follows:

tanh x
e e

e e
( ) =

−

+

x x

x x

−

−
(12)

However, the limitations of the Tanh function like high computation cost and irresolvable
gradient vanishing restrain the usage of Tanh function. The Rectified Linear Unit (ReLU)
function then becomes the most commonly used55 activation function as it converges quickly
without introducing a gradient vanishing problem. The definition of ReLU can be given in the
form of:

≥
ReLU x

x x

x
( ) =

, when 0

0, when < 0
(13)

As the gradient vanishing no longer exists when ReLU is used as the activation func-
tion, deeper networks can be effectively trained. The ReLU activation function is shown in
Figure 14.

However, as can be seen from Figure 14, some features that might be useful are lost as the
output of the ReLU function is set to be zeros when activations are negative. To reduce feature
loss due to activation functions, numerous ReLU variants are being introduced in the area.
Leaky ReLU (LReLU) remains the negative of activations by multiplying the negatives with a

FIGURE 13 Sigmoid and Tanh function [Color figure can be viewed at wileyonlinelibrary.com]
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small positive constant of 0.01 while the values of positive activations remain the same as that
of ReLU. Mathematically, LReLU can be expressed as follows:

≥
LReLU x

x x

x x
( ) =

, when 0

0.01 , when < 0
(14)

However, the fixed slope in LReLU can be inappropriate on some occasions. To the end of
setting flexible slopes for negative activations, PReLU was proposed. PReLU can be written in
the form as follows:

≥
PReLU x

x x

αx x
( ) =

, when 0

, when < 0
(15)

where α is a small positive variable that is determined according to neural networks. In another
strategy called randomized ReLU (RReLU), the value of the slope for negative activations is
randomly chosen from a predefined range. Instead of determining the slope before training in
PReLU, the slope in RReLU is selected from a given range in each training epoch. RReLU
function can be extended as follows:

≥
RReLU x

x x

α x x
( ) =

, when 0

′ , when < 0
(16)

where α′ follows a uniform distribution from c to d, where c d, ϵ[0,1). Besides the series of
above‐mentioned ReLU, there are also activation functions that introduce exponential opera-
tion for better approximations of negative activations. Exponential linear unit (ELU), a typical
function that allows negative activations to be close to zero, has also been widely used as the
activation function. ELU can be written as follows:

≥


ELU x
x x

β e x
( ) =

, when 0

( − 1), when < 0x
(17)

where β determines the scale of closeness between the output of activations to zero. The
larger β, the bigger distance. Two ELU functions with different values of β are shown in
Figure 15.

FIGURE 14 ReLU activation function [Color figure can be viewed at wileyonlinelibrary.com]
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ELU function can be easily extended to scaled exponential linear units (SELU) by in-
troducing a scale factor γ. SELU, therefore, can be written as follows:

≥


SELU x
γx x

γβ e x
( ) =

, when 0

( − 1), when < 0x
(18)

In Table 5, we briefly summarized the activation functions for reference.

FIGURE 15 ELU functions when β = 0.5 and β = 1 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Activation functions

Name
Symmetry
about origin Saturable

Convergence
speed

Output
range Features

Sigmoid No Yes Low (0, 1) Gradient vanishing

Tanh Yes Yes Low (−1, 1) Zero‐centered, faster than
Sigmoid but still suffers
from gradient vanishing

ReLU No No Fast [0, +∞) No gradient vanishing but
may have dead neurons

Leaky
ReLU

No No Restricted fast (−∞, +∞) Ease dead neurons issue

PReLU No No Relatively fast (−∞, +∞) Faster than leaky ReLU

RReLU No No Restricted Fast (−∞, +∞) Flexibility

ELU No No Fast (−1, +∞) Faster than ReLU

SELU No No Restricted Fast (−1, +∞) Flexibility
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The fully connected layer works as the “classifier” in the whole CNN model. All pre-
vious layers including convolutional layers, pooling layers, and activation layers focus on
extracting and mapping useful into lower‐dimensional representations; the fully connected
layer then maps those representations into the targeted space and then completes classi-
fication. Feature maps from the last activation layers are first vectorized as the input for the
fully connected layers. By stacking multiple layers of the fully connected layers, features
are weighted by different weights, and the dimensionality of the features is further reduced
towards the targeted one. Compared to the number of parameters in convolutional layers,
the number of parameters in the fully connected layers is usually larger. Also, the models
tend to overfit when a large sum of parameters is introduced into the models. To resolve
these issues, global pooling has become the substitute for the fully connected layers. After
replacing the fully connected layers with global pooling layers, the number of parameters
in models could be significantly reduced while the vectorization of features turns out to be
much simpler.

3.1.4 | Novel convolutional architectures

Since the proposal of AlexNet,9 numerous high‐performance CNN models have been developed
in the past few years with novel architectures. AlexNet, not only the biggest winner in Im-
ageNet Large‐Scale Visual Recognition Challenge 2010 (ILSVRC‐2010)10 contest and ILSVRC‐
2012 competition64 with only 8‐layer in architecture but also played the role as the cornerstone
for the development of deep CNN in the following years. It has been noted that the number of
learnable parameters in CNN is largely determined by the number of neurons in the fully
connected layers. Therefore, the removal and replacement of fully connected layers raised great
concern. In 2013, Min et al. proposed to replace fully connected layers with global average
pooling layers and therefore, reduce the size of prior‐arts greatly.65 Increasing the depth and
width of the network is an intuitive way to improve network performance. In 2015, the authors
of VGG net proposed to increase the performance of CNN by increasing the depth of net-
works.66 Only 3 × 3 kernels are used throughout the proposed models, which showed re-
markable performance improvement in the ImageNet challenge. GoogLeNet,12 the champion
of ILSVRC‐2014, introduced novel architecture named Inception to increase the width and
depth of the network while kept the computational costs expedient. Three convolution kernels
with different sizes are paralleled in three columns to extract rich features while the parallel
pooling path, according to the authors, was added for possible benefit. All of the outputs from
each path are concatenated to form the final output feature maps. However, one problem
brings in by concatenation of feature maps is the unavoidable increase of the output feature
maps. Therefore, 1 × 1 convolutions were introduced to reduce the dimensions during con-
volution operations. The details of Inception module is given in Figure 16.

However, the deeper the network, the more difficult it is in training. To mitigate the
difficulty in training sessions of deep CNNs, researchers developed residual learning, a certain
kind of shortcut connection technique.11 An illustration of residual learning is shown in
Figure 17.

Given the desired output H(I) as the underlying mapping of input I after stacked nonlinear
layers, the difference between H(I) and I can be denoted as F(I), which is
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F I I I( ) = H( ) − (19)

Therefore, H(I) can be represented by F(I) and I by:

H I F I I( ) = ( ) + (20)

It was believed that F(I) is easier to be optimized than H(I) because F(I) is mapped from I by
the nonlinear units while H(I) is unreferenced to I. There are also numerous shortcut con-
nection techniques found to be useful to improve the performance of CNNs. DenseNet, which
incorporates the novel convolution blocks codenamed dense blocks, showed great improve-
ment on the popular image recognition tasks, including ImageNet and CIFAR‐10.67,68 In dense
block, several convolution layers are stacked for feature extraction where feature maps gen-
erated in the previous convolution layers are stacked as input for following convolution layers
in the block. Details can be seen in Figure 18. Given the number of channels of the input
feature maps is k0, each convolution layer produces k channels feature maps, then the number
of channels of feature maps of ith layer can be expressed as follows:

∗k k i k= + ( − 1)i 0 (21)

FIGURE 16 Inception module in GoogLeNet [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 Residual learning block [Color figure can be viewed at wileyonlinelibrary.com]
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To improve the CNNs representational power by channel relationship, a new architectural
unit named SE block (Figure 19) was developed by Hu and others.69 SE block is a two‐stage
convolution block that consists of the squeeze phase and excitation phase. During the squeeze
phase, a channel descriptor of size 1 × 1 × C(C corresponds to the channels of feature maps)
depicts global information in each channel and therefore enables useful information to be
enhanced channel‐wise. In the excitation phase, specific activations learned based on the re-
lationships between channels are taken as the output. The output has the same size as the input
feature activation. One advantage of the SE block is that it can be inserted into any depth of the
state‐of‐the‐art network with little computational costs introduced.

Given the input feature map ∈X H W C× × , then squeeze operation generates a C1 × 1 ×

feature map ∈R C1×1× by global average pooling, which can be denoted as follows:

∗
 R

H W
X m n=

1
( , )i

m

H

n

W

i

=1 =1

(22)

where Ri and Xi stand for ith feature map in R and X, respectively. For excitation operation, two
fully connected layers with parameters ∈W rC C

1
× and ∈W C rC

2
× are stacked to extract

channel‐wise relationships. The feature map R′ after excitation operation can then be denoted
as follows:

FIGURE 18 Dense block [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 SE block [Color figure can be viewed at wileyonlinelibrary.com]
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R sigmoid W δ W R′ = ( ( ))2 1 (23)

where δ is the ReLU function.55 Then in Scale operation, R′ pointwise multiplies with the input
feature map X and leads to channel enhanced feature maps. By iteratively updating the
parametersW1 andW2, more representative channels are enhanced while the less representative
channels are depressed instead. With the development of CNNs, researchers have endeavored
to propose new models with computational efficiency and comparable even higher accuracy on
ImageNet. The summary of the novel convolutional architectures can be seen in Table 6.

3.2 | Fully convolutional neural network

CNNs are widely used as solutions for image‐level tasks such as image classification and
detection. However, there are also demanding needs on pixel‐level tasks such as segmentation.
Therefore, FCNNs are developed. FCNNs can be adapted from CNNs, where fully connected
layers are replaced with deconvolutional layers and upsampling layers,70 the backward versions
of convolutional layers and subsampling layers (Figure 20).

Given the size of input of deconvolution i, the size of kernel k, the padding size p, the stride
s, then the output size o can be denoted as follows:

TABLE 6 Novel convolutional architectures

Name Convolutions Size of kernels
Shortcut
connection Features

Inception module Padded 1 × 1, 3 × 3, 5 × 5, 7 × 7 No Higher efficiency on feature
utilization

Residual learning
block

Normal 1 × 1, 3 × 3, 5 × 5, 7 × 7 Residual learning Mitigate training difficulty
for deep networks

Dense block Normal 1 × 1, 3 × 3, 5 × 5, 7 × 7 Dense connection Allow features to be reused
in consequent layers

SE block Normal 1 × 1, 3 × 3, 5 × 5, 7 × 7 Squeeze and
Excitation

Improve CNN
representation through
channel relationship

FIGURE 20 Deconvolution. The blue grid is the input while the green grids are kernels for deconvolution.
The output is denoted in red grids where input is firstly padded [Color figure can be viewed at
wileyonlinelibrary.com]
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o s i p k= ( − 1) + 2 − + 2 (24)

Unlike CNNs, which generate probability scores of different classes, FCNNs generate score
maps of the same size as the input images. Each pixel in the input images is classified into one
of k targeted categories, and segmentation results come from the probability map of pixels.
Feature maps in earlier layers are also combined in FCNNs through upsampling layers with
deconvolutional results to improve prediction accuracy. An example of FCN is shown in
Figure 21.

In Figure 21, W, H, 3 are the width, height, and the number of channels of the input image.
k is the number of classes that pixels belong to. Intermediate feature maps are symmetrically
downsampled and upsampled due to convolution and deconvolution. The depth, which is the
level of downsampling, could be even deeper if necessary. The red dashed lines denote the skip
connection. The output feature maps of the second and third convolutional layers are
concatenated to the second last and last deconvolutional layers by upsampling.

Novel FCNNs have achieved promising results in the applications of many fields. DeepLab
is an FCN that merges the methods from Deep CNNs (DCNNs) and probabilistic graphical
models into one model to address the pixel‐level classification problem.71 Because of the in-
sufficiency of responses at the final DCNN layer to provide accurate object segmentation, the
responses are then combined with a fully connected conditional random field (CRF). On the
PASCAL VOC‐2012 semantic image segmentation task, the proposed framework achieved
71.6% IOU accuracy on the test set, which was the best to date. In 2017, A new version of
DeepLab surprisingly achieved 79.7 percent mIOU in the test set of PASCAL VOC‐2012 se-
mantic image segmentation task.59 In this version of DeepLab, the authors proposed to com-
bine atrous convolution with the spatial pyramid pooling (SPP) technique and thus formed so‐
called atrous spatial pyramid pooling (ASPP). Atrous convolution, which was initially designed
for wavelet decomposition in Holschneider et al.,72 enables enlarged inceptive fields of filters in
convolutional layers without bringing in the extra number of parameters. Thanks to SPP and
atrous convolution, convolutional layers in the ASPP framework can capture image context and
objects in images at multiple scales.

U‐net, an end‐to‐end FCN, won the ISBI cell tracking challenge 2015 by a large margin with
fast speed.73 Two paths, including a contracting path for context capture and an expanding path
that provides a symmetric extension of feature maps, enable precise localization. The training
strategy proposed turns out to use the available annotated samples and data augmentation
more efficiently. It was proved on the ISBI challenge for segmentation that the proposed

FIGURE 21 Architecture of FCNNs. Dashed red arrows denote the shortcut connections between feature
maps [Color figure can be viewed at wileyonlinelibrary.com]
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network can be trained end‐to‐end by using few images with exceeding performance than that
of the prior best method. A simplified architecture of U‐Net is shown in Figure 22.

Another semantic pixel‐wise segmentation architecture is SegNet, where the core lies in the
trainable segmentation engine comprising of AE (Figure 23). The encoder structure is the same as
topological the VGG16 network66 while the decoder is responsible for mapping low‐resolution
features maps from the encoder to feature maps that have the same size of input images.

The pooling indices, which were computed in the max‐pooling layer of the corresponding
encoder, were used in the decoder. By doing such, learning to upsampling is removed. Dense
feature maps are acquired through the sparse upsampled maps that were convolved with trainable
filters. Compared to the other state‐of‐the‐art architectures such as DeepLab‐LargeFov,71

DeconvNet,74 SegNet is more efficient both on memory and computational time. When comparing
the architectures in terms of the number of trainable parameters, it is also much smaller. In the
latest version of DeepLab, which was known as DeepLabv3+, methods from SPP, encoder‐
decoder, separable convolution are included to forge a faster and stronger encoder‐decoder net-
work. The accuracy on the test set of PASCAL VOC 2012 is then further improved to 89%.

FIGURE 22 Simplified architecture of U‐net [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 23 Architecture of SegNet [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Optimization techniques

Usually, optimization is also an important element in the successful application of deep
learning. Along with the development of novel architectures of deep learning models, novel
optimization algorithms have been extensively explored as well. In this section, we will briefly
review the useful optimization techniques including regularization technique and weight in-
itialization technique.

Regularization technique can be subdivided into three categories including regularization
through data, network architecture, and regularization term respectively. In data‐based reg-
ularization techniques, batch normalization and dropout are two representative techniques,
where the dropout technique is especially effective for overfitting mitigation. Similar to drop-
out, there is another drop connection technique called DropConnect that randomly sets the
subset of weights to be zero.75 Other variants of dropout can be seen in References [76–78].
Novel architectures can also serve as a regularization technique. Weight sharing, which allows
part of the networks to share the weights between them, reduces the number of training
parameters and therefore improves the generality of deep learning models. Besides the weight
sharing scheme, proper activation functions also help to improve the performance of deep
learning models. The introduction of rectified linear unit (ReLU) successfully solved the gra-
dient vanishing problem brought by the sigmoid function while ReLU tends to be more ex-
pressive than the sigmoid function. Additionally, transfer learning and meta‐learning are the
other two useful methods that can be treated as regularization methods. It turns out to be more
intuitive to implement regularization through regularization terms or so‐called regularizers by
adding them to the loss functions. The regularization term is independent of the target but
introduces desired properties into the models. Some examples of regularizer‐based regular-
ization methods can be seen in Lasserre et al.79 and Goodfellow.80

Weight initialization technique is also part of optimization as the purpose of weight in-
itialization is to improve the performance of deep learning models. The most intuitive weight
initialization way is to set the weight to be zeros or constant. However, the issue is that the
distribution of the weights in each learnable layer remains the same and therefore impairs the
learning capability of the deep learning models. Random selection of weights from a normal
distribution can substitute for constant or zero initialization. However, gradient vanishing and
explosion can happen due to randomness. A further consequence is that the deep learning
model may never converge. The improved version of the random selection of weights is to
select weights from a bounded uniform distribution. Other initialization techniques can be
found in Glorot and Bengio81 and He et al.82

3.4 | Applications of deep learning

Deep CNNs are widely used in computer vision tasks for image classification, object detection,
and image caption. Besides the mentioned networks with novel convolutional units and novel
architectures, numerous state‐of‐the‐art networks show high performance on the image clas-
sification task.13,14,83 Traditionally, image classification is two‐stage, which comprises feature
extraction and classification. In feature extraction, handcrafted features are firstly extracted for
the following trainable classifiers.84 However, a major shortcoming is that the systems' per-
formance heavily relies on the design of feature extraction. The advent of deep CNNs, however,
has successfully set a new milestone for image classification. In usual life, deep CNN‐based
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image classification methods have been merged into various scenarios such as Gaming, auto-
motive, and manufacturing.85,86 In autonomous driving, image recognition, which is image
classification problems, in essence, plays a key role in identifying moving and static objects,
including pedestrians, pathways, traffic lights, and road signs. In manufacturing, image clas-
sification can be used to detect defects within the manufacturing process and improve the
quality of industrial products.

Besides image classification for the initial proposal of CNNs, object detection is also an area
where CNNs have been extensively applied. Object detection is composed of two subtasks:
object localization and object classification. Localization determines the positions of objects in
the given images, while classification follows to classify the found objects into a specific ca-
tegory. For a long, object detection remains to be an attractive yet challenging task given the
complexity of images with little gain in performance The sliding window strategy is popularly
used in the community to generate bounding boxes (BB), regions where objects are likely to
show up. However, the process seems to be inefficient and even inaccurate. Besides, combi-
nations of low‐level descriptors and shallow models can not bridge the semantic gap. When
CNNs were brought into the area, object detection has been greatly advanced because of its
capability to learn more complex features and the flexibility to learn more informative re-
presentations. Ideal object detection systems are expected to accurately detect and recognize
objects with high efficiency, measured by computational time, memory, and storage.87

Deep‐learning‐based object detection frameworks can be classified into two types. One
followed the traditional pipeline of detection by generating the region proposals first and
then have the proposals classified into different categories.88–91 One typical region‐based
network is RCNN.89 Though it showed high performance on detect, the framework suffers
from several flaws. One is the optimization difficulty due to multistage training. In RCNN,
four stages including region proposals computation, CNN model training and finetuning,
class‐specific SVM classifiers training, and bounding box regressor training. However, each
stage has to be individually trained, which leads to a time‐consuming training process and
makes it even harder to be optimized. Also, when it comes to the testing phase, testing is
slow because the features of each region proposed are extracted by CNNs. To speed up the
detection process, SPPNet, which solved the problem with fixed‐size input, was proposed to
generate the fixed lenGTh of features for the arbitrarily sized candidate regions in the test
image.90 An improved version of RCNN named Fast RCNN enabled the simultaneous
training of a softmax classifier for classification and a class‐specific bounding box regres-
sion. Due to this improvement, Fast RCNN was typically three times faster than RCNN/
SPPNet during the training session.92 Based on a novel region proposal block named region
proposal network (RPN), faster RCNN can break the speed bottleneck in Fast RCNN.93 In
RPN, a certain number of anchors of different aspect ratios and scales, or the reference
boxes, are generated at feature maps produced by convolution. Each anchor was then
mapped to a vector with lower dimensionality for two siblings FC layers, which are re-
sponsible for object classification and box regression. Contrary to reliance on external
region proposals of fast RCNN, RPN in faster RCNN uses internal resources within the
network and therefore contributes to further speedup of detection. In R‐FCN,94 the authors
proposed to construct position‐sensitive score maps by using specialized convolution layers
as the output of a fully convolutional network. R‐FCN can achieve comparable accuracy to
faster RCNN with backbone ResNet101 with shorter running times. Mask RCNN, an ex-
tended version of faster RCNN, focuses on pixel‐wise object instance segmentation. In mask
RCNN, a new FCN branch was added to output binary masks for each RoI when another
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branch simultaneously predicts the class and box offset. The performance of mask RCNN is
startling that it achieved top results on COCO object instance segmentation and bounding
box object detection.

The aforementioned two‐stage region‐based showed powerful performance on general ob-
ject detection. However, these approaches are too computationally expensive for mobile devices
due to the limited computational capability and storage. Hence, another strategy that treats the
detection as a regression or classification problem by employing a unified framework has been
in the focus of research as well. The typical representative of unified frameworks is DetectorNet,
OverFeat, YOLO, SSD, and CornetNet.88,95–98 As the first attempt at deploying CNN for object
detection, DetectorNet used AlexNet with the final softmax classifier layer replaced by a re-
gression layer. Foreground pixels of the object are detected by one network while the object's
top, bottom, left, and right halves have to be detected by four additional networks. During the
training session, many crops of the images have to be taken as the input of multiple networks,
which slows the detection process. As the champion of ILSVRC2013 localization and detection
competition, OverFeat remains one of the most influential networks in object detection.
OverFeat used the sliding window to generate object candidates while fully connected layers,
which restrain input size, are removed to form a fully convolutional network. The input image
was scaled up to six different scales for multiple‐scaled features to improve the overall per-
formance. For each scaled input, a grid of predictions was generated. The offset max‐pooling
was applied for more views and therefore increases the robustness. When objects were iden-
tified, bounding box regressors were applied to generate bounding box predictions while a
greedy merge strategy was deployed to combine each prediction. YOLO is another expedient
framework that runs at 45 FPS in real‐time.96 Unlike two‐staged frameworks that predict
detections through features from local regions, YOLO uses global features from the entire
image. Specifically, an input image is divided into S × S grid, within which each subgrid C‐class
probabilities, confidence scores, and B bounding box locations are predicted. However, more
localization errors were reported of YOLO when compared to Fast RCNN due to the improper
setting of scale, aspect ratio. Single shoot detector (SSD), a framework that is even faster than
YOLO without sacrificing too much detection performance, was well known for multiscale
detection. Early SSD layers were maintained as popular networks while extra convolution
layers are stacked to the top to provide multi‐scale feature maps, based on which category
scores and box offsets are predicted. The proposal of CornerNet comes from the questioning
about the predominant role of anchors. Authors of CornerNet claimed that anchor boxes would
cause issues including a huge imbalance between positive and negative samples, slowing down
the training, and so on. To resolve this, the author formulated the bounding box detection
problem as paired keypoints, which are top‐left and bottom‐right, detection problems. The
backbone of CornetNet is two stacked Hourglass networks while a simple corner pooling
approach was attached for better corner localization.99 The advantage of CornerNet is that it
outperformed all previous one‐stage detectors. However, the inference time is slower than the
rest of one stage detector. Nevertheless, an improved version of CornetNet named CenterNet
further raised MS COCO AP to 47.0% though it was slower than CornetNet.100

One of the areas that benefit most from the advancement of CNNs is medical image
analysis. Thanks to the massive growth in the volume of medical data and computing power of
the hardware, deep learning has been successfully applied for risk predictions and automation
analysis.101 In Nasr‐Esfahani et al.,102 a simple CNN with only two convolutional layers was
developed for the detection of Melanoma. One hundred and seventy images, including 70
melanoma and 100 nevi, are analyzed in the research. Data augmentation was applied to
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generate a total of 6120 images, while 80% of them are partitioned into the training set. The
developed model showed 81% sensitivity and 80% specificity on the test set. Glaucoma, a great
threat to aged people who are over 60, could lead to blindness. To effectively detect glaucoma,
researchers evaluated the capability of three deep CNNs, which are VGG19, ResNet152, and
DenseNet201, on the detection task on a data set that has 3312 images.103 The experiment
showed that all networks involved for a binary classification task have an area under the curves
(AUCs) of 0.9 or more, which indicates the plausibility of applying deep CNNs for glaucoma
detection. Pneumothorax is a thoracic disease that can induce a life‐threatening emergency.104

Timely reviewing radiographs is demanding for the diagnosis but becomes challenging due to
the huge volumes of images. The state‐of‐the‐art networks, including Xception and ResNet,
have been transferred for a binary task where images with large‐ or moderate‐sized pneu-
mothorax are considered positive. The experimental results on an internal data set with 13,292
frontal chest X‐rays showed promising results that the highest specificity and sensitivity are
over 0.80. However, the models showed a performance decline on the external data set.
Nevertheless, the application of deep learning to pneumothorax detection seems to be pro-
mising. There are also prominent works on other disease detection by utilizing deep learning
techniques.105–107

4 | BREAST ABNORMALITIES ANALYSIS BEFORE DEEP
LEARNING

Traditional CAD systems for breast abnormalities analysis followed strict pipelines during the
process of development, which makes them better explainable. Also, there are some similarities
between traditional CAD systems and deep learning‐based ones, such as they share similar
measurements for evaluations and some deep‐learning‐based works are inspired by the tradi-
tional ones. So before we formally move to applications of deep learning in breast abnormalities
analysis, we briefly introduce the pipelines before deep learning and then continue with
measurements for evaluation.

4.1 | Pipelines before deep learning

In the early stage of breast cancer, breast mass and microcalcifications are the two most
palpable signals. Therefore, the community has been focused on developing novel detection
models of breast mass and microcalcifications for a long time. Traditional CAD systems mainly
consist of four components including preprocessing, segmentation, feature extraction and se-
lection, and final analysis as can be seen in Figure 24. In traditional CAD systems, pre-
processing procedure is a crucial component that affects the overall performance of CAD
systems. Preprocessing focuses on improving the quality of images for better understanding or
visualization by utilizing image processing techniques such as histogram equalization and
image denoising.108,109 Inspired by the work presented in Zuiderveld,5 M. Sundaram proposed
an improved contrast enhancement method termed HM‐CLAHE to improve the contrast of
mammograms. Based on wavelet processing, an algorithm that denoises and enhances mam-
mograms was proposed.110 The acquisition of ROIs from raw images, or detection, is the most
important step that directly affects the performance of the following components. We will have
a detailed introduction of detection in a later section.
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Preprocessing is usually required to standardize the input images for analysis. The raw
images could be of low resolution and contaminated by noises. Especially, mammograms are
usually taken from different views so that standardizing images in different views also requires
preprocessing. Also, the images may suffer from low contrast. Contrast limit adaptive histo-
gram enhancement (CLAHE) is a widely used image contrast enhancement method. In Yu
et al.,111 CLAHE is used to enhance the image contrast while it was repurposed as the data
augmentation method. In another work,112 Borges et al. explored the effect of denoising on
the localization of breast microcalcification. In another research work,113 a framework for
mammogram image denoising was proposed.

Segmentation, especially for mammograms that contain the small size of micro-
calcification, is also another critical component that plays an indispensable role in CADx
systems. The popular algorithms include thresholding, active contours, and graph‐cut,
and so forth. An algorithm termed the self‐guided region‐growing method realized the
task of microcalcification by using the intuitive region‐growing method on mammograms
being enhanced by histogram expansion.114 A fuzzy logic‐based segmentation method
that applied fuzzy c‐means clustering on mammograms enhanced by morphological to-
phat algorithm was proposed by Bhattacharya and Das.115 Compared to the task of cal-
cification segmentation, mass segmentation turns out to be less challenging given that the
size of masses is generally much larger than the size of calcification deposits. An edge‐
based segmentation method was proposed to determine the boundary for a suspicious
mass region by Zhang and others.116 Contrast stretching was first applied to improve the
contrast of ROIs acquired from mammograms, followed by a denoising method to remove
possible noises. The energy texture image is then computed correspondingly, which is
severed to detect the edges in images. Finally, the boundary of mass is determined by
forming enclosed edges. Active contour,117–119 as a powerful segmentation tool, has been
widely used in mass segmentation.120,121 Hao and others120 proposed a hybrid method
that combines a random walk algorithm and Chan‐Vese (CV) active contour. Noises in the
ROIs are firstly depressed while a set of seeds for random walks is set. Based on the result
of random walks, the modified CV model improves the result by updating the probability
matrics, which can be converted to foreground and background regarding mass.

Feature extraction aims at extracting discriminative features for classification from seg-
mented ROIs containing masses and calcifications. After segmentation, the features are mainly
morphological and texture, which are important indicators of malignancy. The extracted fea-
tures, usually in the form of vectors, are then forwarded to the classifier, which analyses the
features and classifies ROIs into the most probable categories. The classical classifiers that are
used to classify objects are also applicable to the classification scenarios. Support vector ma-
chines (SVM), as one of the powerful tools in supervised learning, reduces the error of learning

FIGURE 24 Data flows of traditional CAD systems [Color figure can be viewed at wileyonlinelibrary.com]
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machines by deploying a structural risk minimization mechanism. SVM has been widely used
for breast cancer detection.122,123 Artificial neural network (ANN), which was developed based
on human perception and can model complex nonlinear functions, becomes another useful
tool for the classification of breast cancer.124–126 However, traditional CADx systems are also
suffering from problems such as lack of robustness and substantial intervention of humans
though they have been widely accepted.

4.2 | Evaluation criteria

In the situation of mass and microcalcification classification, the categories are generally
binary. The metrics to evaluate the performance of classifiers are Accuracy, Sensitivity, and
Specificity, Precision, and F1 score. TP is the number of positive ROIs that have been correctly
classified as positive. Similarly, true‐negative (TN) is the number of negative ROIs that are
classified as negative. False‐positive (FP) and false‐negative (FN) stand for misclassified ne-
gative ROIs and positive ROIs The Accuracy, also called Recall, can then be represented by TP,
TN, FP, and FN by

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

The Sensitivity measures the ability of the classifiers on detecting positive ROIs by

Sensitivity =
TP

TP + FN
(26)

As the counterpart of Sensitivity, Specificity is used to evaluate the performance of the
classifiers on detecting negative ROI, which can be denoted as follows:

Specificity =
TN

TN + FP
(27)

Precision, which shows the percentage of TP ROIs detected out from all ROIs that are
classified as positive, can be expressed by TP and FP by

Precision =
TP

TP + FP
(28)

F1 demonstrates the classification ability of the classifiers:

F1 = 2 ×
Precision × Accuracy

Precision + Accuracy
(29)

For free‐response systems, free‐response receiver operating characteristic (FROC) curves
are used to characterize the performance of these systems when all decision thresholds are
applied.127
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To efficiently evaluate the regression models for repetitive thresholding with different
thresholds, area under the ROC curve (AUC) has been widely introduced for its free from
parameters and simplicity. AUC measures the entire area of the ROC curve from (0,0) to (1,1)
in the two‐dimensional space while the bigger area, the more desirable the classifier is. An
example of AUC is given in Figure 25.

For segmentation, the commonly used evaluation criteria are pixel accuracy (PA), mean
pixel accuracy (MPA), mean intersection over union (MIoU), and frequency weighted inter-
section over union (FWIoU).128 Given a k‐class segmentation task (background is included as
one class) and the segmentation results C, the corrected segmented pixel that belongs to class

∈i i k( [1, ]) can be denoted as Cii while the pixel in C is denoted as Cij when it is mis‐
segmented into class ∈j j k( [1, ]). Then PA, as the simplest metric that only calculates the
ratio between the number of correctly classified pixels and the total number of the pixels in GT,
can be written by
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MPA is slightly improved that correct pixels are computed within each class first and then
be averaged by the total number of classes.
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MIoU, as a standard metric for segmentation, calculates the ratio between the intersection
and the union of two sets, which are GT and the predicted segmentation. According to the
segmentation results, the predicted pixels can be categorized into three classes: TP, FN, and FP,
as shown in Figure 26. For the calculation of MIoU, IoU is firstly calculated within each class
and then be averaged.
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FIGURE 25 Area under the ROC curve (AUC) [Color figure can be viewed at wileyonlinelibrary.com]
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FWIoU is an improved MIoU that considers the class importance concerning the appear-
ance frequency of each class.
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The dice coefficient (Dice), also known as the F1 score, is another common segmentation
performance metric.
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Among all of the metrics,MIoU turns out to be the most popular one thanks to its simplicity
and typicalness.

5 | ABNORMALITY DETECTION BY CNNS

In this section, we will introduce the application of deep learning in the detection of ab-
normalities. As breast mass and microcalcification are the two main breast cancer symptoms,
we mainly focused on works that detect these two kinds of abnormalities. Multiview detection
is commonly used in the clinical diagnosis of breast abnormality. Usually, if a suspicious region
in left CC (LCC) view is found, the corresponding region in the left MLO (LMLO) view and
right CC (RCC) view will be checked. This region's likelihood to be abnormal increases when
the region in LMLO is also suspicious while turns out to be normal in RCC.129 Generally, one
view of mammograms is sufficient to make reliable diagnosis decisions. However, it was shown
in Bekker and others130 that multiview could be more beneficial to the detection of breast
abnormalities.

FIGURE 26 Intersection of Union (IoU) [Color figure can be viewed at wileyonlinelibrary.com]
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5.1 | Mass detection

The formation of mass is one of the most common symptoms of breast cancer. Extensive
research on mass detection has been done, and multiple studies have shown high perfor-
mance.131–135 The detection of mass can generally divide into two steps: localization of mass
and classification. With the help of deep CNNs, these two steps can be realized easier but more
efficiently. Masses in mammograms can be grossly classified into being benign and being
malignant. Usually, the mass region in a mammogram is quite different from surrounding
tissues, as can be seen from the examples shown in Figure 27. However, mass detection could
be hampered by the high‐density breast, which makes mass less palpable. As automatic mass
detection remains a challenge, some research focused on developing semiautomated or manual
intervention involved detection systems that classify manually detected mass into benign and
malignant categories.136 Using the high‐level features extracted by deep CNNs, those CADx
systems outperformed the CADx systems built on traditional machine learning methods.

Arevalo and others136 developed a CNN‐based mass classification system. In this study, a
data set named BCDR‐F03, which was no longer maintained was, analyzed. In the data set, 344
patients contributed to 736 film images in total, of which 310 of them were malignant mass
lesions while the rest were benign mass lesions. The data set provides manually segmented
lesions; therefore, ROIs were extracted according to the given bounding boxes and then were
rescaled to a fixed size. Data augmentation was applied to flip and rotate the ROIs to generate
seven new artificial ROIs from one ROI. The ROIs were then enhanced by global and local
contrast normalization before they were fed to a deep CNN model for classification. The CNN
models with different depths were deployed to produce deep learning representations for a
following linear SVM, the classifier of the proposed model. To measure the efficacy of deep
learning representation, manual descriptors such as histogram of oriented gradients (HOG) and
Histogram of gradient divergence (HGD) were compared. Experimental results showed that
CNN models with three convolutional layers performed best, giving the highest accuracy
at 0.860.

A hybrid method for the detection of breast mass, which was similar to the work by
Dhungel and others,137 was presented in Dhungel and others.138 The detection of ROI consists
of three stages. In the first stage, the deep belief network (m‐DBN) and a Gaussian mixture
model (GMM) were introduced to generate mass candidates. The following two stages are
aimed at refining the candidates from coarse to fine. In the first stage, the m‐DBN model was
applied to input images of coarse resolution by utilizing a grid‐based method. Each grid point
was classified into positive and negative regarding classification results on the fixed size patch
that takes the grid point as the center point. All positive grid points were then further classified
in a finer resolution stage. The coarse‐to‐fine refinement was repeated three times while GMM
works on the finest resolution image for pixel‐wise classification. When training the m‐DBN
model, positive patches were defined when central points fell into the annotated mass. Negative
patches, where the central points did not belong to the annotated mass, were randomly sam-
pled in the first stage. Final estimated positive labels and negative labels were obtained through
thresholding posterior probabilities produced by the GMM model. The pixel‐wise classification
was combined through union operations that connected components analysis determines the
mass candidate. In the second stage, two‐stage R‐CNNs were stacked to reduce the false‐
positive rate. The training samples for R‐CNNs were considered positive when the overlap
between the estimated bounding box and the annotated box was greater than 0.2. Otherwise,
they were considered negative. Instead of using the softmax layer for classification, SVM, which
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takes the features from the last fully connected layer as the input, was reported to produce
better classification results. The candidates who survived the first cascade of the R‐CNN were
then passed to the second cascade of R‐CNN for further false‐positive reduction. As reported,
the false‐positive rate was still high even after R‐CNNs stage; therefore, a third subsequent stage
that used random forest (RF) as a final classifier to remove false‐positive candidates was
attached. A huge number of hand‐crafted features, such as area, perimeter‐to‐area ratio, cir-
cularity, and rectangularity, were extracted from the second stage's survived candidates. Fi-
nally, 781 hand‐crafted features were used as the input of RF. Besides these three‐staged

(A)

(B)

(C)

(D)

FIGURE 27 Mammograms of mass and corresponding ROIs
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detection procedures, one more hypothesis refinement step was followed to adjust the
bounding boxes. The final mass detection method gives a TPR of 0.95 ± 0.02 at a FPI = 5 for the
testing set while TPR of 0.95 ± 0.02 at a FPI = 3 when an Intersection over Union (IoU)≥ 0.2.
The training set was comprised of 60% of images from the INbreast data set, while 20% of
images were partitioned into the testing set. The false‐positive regions have to be manually
excluded for the following modules such as segmentation.

More works on developing automated detection systems of breast mass have been done.131

In Agarwal and others,131 a sliding window detection algorithm is the most classical detection
method that can be implemented simply by scanning a window of a specific size on images
where objects to be detected. By incorporating the sliding window technique, a patched‐based
CNN model aimed at automatic mass detection in full‐field digital mammograms (FFDM) was
proposed. Patches with fixed 224 × 224 pixels are obtained from the original mammograms
when the sliding window slides over the images at the stride of 56 × 56 pixels. Whether a patch
to be labeled as negative or positive depends on whether the center pixels in the patches were
located in the regions of masses or not. Three state‐of‐the‐art networks including VGG16,66

ResNet50,139 and InceptionV313 were utilized to produce the mass probability of the patches.
By aggregating each patch's mass possibility, a mass probability map (MAM) can be formed for
the determination of bounding boxes. The MAM was then thresholded by a predefined value to
generate the final bounding box. The data sets involved in the work are CBIS‐DDSM and
INbreast while CBIS‐DDSM was used for pretrained and INbreast was used for validation. To
validate the performance of networks when they were pretrained on data sets from a different
domain, two scenarios have been explored: one is direct transferring networks pretrained on
ImageNet to the targeted INbreast, however, in another scenario, CBIS‐DDSM was used to
finetune networks trained on ImageNet, and the finetuned networks were then trained on
INbreast. When evaluating the developed models on INbreast using five cross‐validations, a
mass was considered to be detected when there was at least 0.2 overlapping between the
bounding box and the annotated ground truth. Finally, it was reported that the best model,
based on InceptionV3, achieved a TPR of 0.98 ± 0.02 at 1.67 false‐positives per image (FPI).

A simultaneous detection and classification system was proposed by Al‐antari and others.140

In their framework, YOLO, which was known for its fast speed and high accuracy, was utilized
to search for the possible mass region from a full mammogram. An augmented mass data set
from INbreast data set was analyzed in the study. There are in total of 107 cases in both reviews
of mammograms in the original INbreast data set. However, few cases have more than one
mass in mammograms leading to 112 masses. Before the detection of mass, all 112 images are
augmented by rotating them with different angles eight times, where the difference between
two adjoining angles is 45°. As a consequence, the augmented data set was comprised of 896
mass images in total. Four cross‐validation method was introduced to evaluate the proposed
detection method, where 75%, 6.25%, and 18.75% of the 896 mass images were partitioned into
the training set, validation set, and testing set respectively. The reported results on the testing
set showed an averaged detection accuracy at 98.96% in a fast way that each image was
processed within only 3 s.

In another research, Kooi and others132 did comparative research to evaluate the perfor-
mance of a CNN‐based lesion detection system and the traditional CAD system. A two‐stage
procedure for the detection of the lesions has been proposed where candidates were generated
in the first stage and then be classified in the second stage. An algorithm proposed in
Karssemeijer and Brake141 was introduced to produce five‐pixel features for each pixel in the
mammogram images. As hypothesized by the authors, every pixel could be the center of a
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lesion. Therefore, positive samples for training candidate detection classifiers are pixels inside
each annotated malignant lesion, which are taken as the center pixels of the patches. To form
an unbiased data set for training, 1 in 300 pixels is randomly sampled from normal images.
Furthermore, the training set, validation set, and test set were split on a patient level to prohibit
any bias. All positive samples are augmented with scale and translation transformations. After
data augmentation, the numbers of positive patches and negative patches were respectively
334,752 and 853,800 in the training set. Afterward, a random forest classifier was trained to
generate the likelihood image, where local optima were taken as seed points for the extraction
of the potential masses. The extracted candidates are then analyzed by CNN and reference
system, where the reference system relies on manual features, such as contrast features and
texture features, extracted from the segmented patches. The CNN architecture, which consists
of five convolutional layers and two fully connected layers, is relatively simple compared to the
advanced networks. Though the AUC of the reference system reached 0.91, the AUC of CNN
was even higher at 0.929. Therefore, the conclusion that CNN outperformed the state‐of‐the‐art
system has been supported by the experiment. To specify the CNN with optimal depth, Arevalo
et al. tested the performance of CNNs with various depths. To validate the best model,
they compared the model with a traditional CAD system method that uses 17 hand‐crafted
features and methods that use HOG and HGD descriptors.136,142 The conclusion was that the
performance improved when learned features and hand‐crafted features were combined.

While X‐ray images, digital breast tomosynthesis (DBT) has emerged as a novel tomo-
graphic technique to eliminate limitations in conventional breast screening methods. By per-
forming a series of low‐dose radiographic exposures, breast tissue is imaged in a 3D manner,
which allows characterized findings including normal structures to be imaged.143 The sum-
mation of overlapping breast tissue, which could be misinterpreted as breast cancer, can be
reduced by this technique. Given its exclusive advantages in localizing lesions, DBT has been
extensively introduced in the detection method based on deep learning.144,145

In another study, Samala and others144 developed an automatic DBT‐based mass detection
system. The authors combined 2282 digital mammograms and 324 DBT volumes to form a
merged data set. An experienced breast radiologist manually marked the mass of interest for
later‐on reference. The developed system consists of two stages within which the first stage
prescreens the false‐positive ROIs while the second stage recognizes TP regions from all regions
that survived from the first stage. In the prescreening stage, first‐order features are introduced
to generate coarse candidate regions, while second‐order features are extracted from the can-
didate regions to reduce false‐positive ROIs. The data augmentation method was used to
generate 45,072 mammographic ROIs and 37,450 DBT ROIs. A deep CNN with only four
convolutional layers and three fully connected layers is used as the classifier. The transfer
learning technique was applied for a better performance of the classifier on the DBT data set.
Initially, the CNN was trained on the mammographic ROIs data set. The last convolutional
layer and all fully connected layers are then fine‐tuned on the DBT ROIs. Experimental results
showed that the trained CNN by mammographic ROIs data set achieved an AUC of 0.99.
However, the trained CNN only showed 0.81 AUC on the training set of DBT data sets without
further training. After fine‐tuning the trained CNN on the training set of the DBT data set, AUC
rise to 0.90, which showed the effectiveness of transfer learning. On breast level detection, the
CNN‐based system showed priority to another feature‐based system on sensitivity at 91%–83%
while the false‐positive rate is only 1 per image.

In another work, Yousefi and others145 designed three breast mass detection models. The
detection system takes 2D slices from 3D DBT as the input. From 87 DBT volumes, a total of
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5040 2D slices were obtained. For all three modules, preprocessing procedures, including image
denoising and pectoral muscle removal, are designed before the detection of mass. For the
hand‐crafted feature‐based module, ROIs are firstly selected for the following hand‐crafted
feature extraction component. The extracted features are then reduced in dimensionality by
dimension reduction component. Finally, multiple‐instance learning was used as the final
classifier for classification. In the second module, the deep cardinality‐restricted Boltzmann
machine (CaRBM)146 was used as the feature extractor. In the third module, deep CNN was
used as the feature extractor instead. Experimental results showed that the model based on
deep CNN has the best performance that it achieved the accuracy at 86.81%, sensitivity at
86.6%, specificity 87.5%, and 0.87 AUC, respectively.

Faster‐RCNN has been introduced in the work147 by Fan et al. for breast mass detection on
a DBT data set which includes 89 patients with 105 masses. Before detection, CC and MLO
views are fused for the identification of nipples in the algorithm proposed in Zhou et al.148 To
reduce the unnecessary computational cost when detecting candidate regions by the
RCNN‐based system, background and skin were excluded by a dynamic multiple thresholding
algorithm. The backbone of faster‐RCNN in the work was AlexNet, the champion of image
classification tasks in 2012. The training of faster‐RCNN was comprised of four steps. The first
step is aimed at RPN training in the detection network to generate proposal bounding boxes as
the candidate masses. In Step 2, another separated classifier was trained using the bounding
boxes generated in the first step. In Step 3, the weights in particular layers of RPN trained in the
first step were updated while the convolutional layers, or the shared layers, were initialized by
the trained classifier in Step 2. In Step 4, the proposal bounding boxes acquired in Step 3 were
used to train the classifier network to update unique layers. Consecutive slices in the form of
2D were fed to the trained detection network. The 3D detection results were formed based on
the detection results on each 2D slice. Bounding boxes in different slices were taken as the
same mass when the overlap‐ratio was greater than 0.5. The bounding box in a slice was
ignored when there were no overlapping bounding boxes found in the neighboring slices. By
merging all of the consecutive founding boxes, the final mass likelihood score was defined. To
make a comparison with the model developed by Samala and others,144 the authors re-
implemented the CAD system by replacing the four convolutional layers with a deeper network
that has 22 layers. The reimplemented system was referred to as the DCNN‐based system. Also,
no transferring from mammography data was introduced as it was reported that direct training
on DBT ROI images would result in a better performance of DCNN models.149 In terms of
AUC, the developed RCNN‐based system achieved 0.96 while the DCNN‐based system was
0.92. The sensitivity of the RCNN‐based system was as same as that of the DCNN‐based one on
the lesion‐based level. However, the FPs per volume of the RCNN‐based system was 1.54 while
the DCNN‐based one had the FPs per volume at 2.81. For the breast‐based level, 0.76 FP was
reported for the developed system while it was 2.25 for the DCNN‐based system. The summary
of the stated systems is given in Table 7.

5.2 | Microcalcification detection

In mammograms, microcalcifications show up in the form of opacities that have different
appearances to other breast tissues. The main features of microcalcification are varied shape,
size, distributions, and morphology. The challenges for accurate classification of micro-
calcifications come from two aspects. One is that the small sizes of microcalcifications are easy
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to be overlooked by radiologists or CAD systems, especially when surrounding tissues cover
small calcifications. For CAD systems, the number of microcalcification pixels, called positive
class, in mammogram images is very small compared to the number of non‐microcalcification,
called negative class. The imbalanced rate between positive and negative classes impedes
most classification systems.150 The other is that the dense background of the breast makes
the microcalcifications less recognizable. Nevertheless, microcalcifications are of high spatial
resolution, which can be useful information for methods that can draw on high spatial fre-
quencies such as wavelet transform.151,152 With the advancement of deep learning, more
efforts have been spent on designing higher‐efficiency microcalcification detection systems.
Mammograms with microcalcifications are shown in Figure 28.

Mordang and others150 developed an automatic microcalcification detection system in
multivendor mammography. In this study, a CNN‐based system was used to analyze 1606
mammograms, amongst which 490 are collected with Holgic digital mammography systems,
1044 acquired with GE Senographe systems, and 72 with Siemens Mammomat Inspiration
systems. Medio‐lateral oblique and cranial‐caudal views of all left and right breasts are avail-
able. To detect microcalcifications, each pixel in a mammogram needs to be classified as
microcalcification, the positive class, or non‐microcalcification, the negative class. Patches
around the positive pixels are taken as positive patches for training while negative patches are
obtained when the center pixel is not a microcalcification pixel. By doing so, there are in total
11,711 positive patches and 27,946,799 negative patches in the training set while the positive
patches and negative patches in the testing set are 5298 and 18,320,976, respectively. Each
patch is of size 13 by 13 pixels while the individual microcalcification is centered. A hard
negative mining strategy was proposed to address the class imbalance between the classes given
that non‐microcalcification outnumbered microcalcification significantly. In the proposed hard
negative mining strategy, the CNN is firstly trained on a small data set. After training, the CNN
classifies the whole data set to remove easy samples. A second CNN is trained on a larger data
set that includes the hard negative samples to distinguish hard negative samples. This study's
CNN architecture is two repetitions of two consecutive convolution layers with a Max‐pooling
layer, and three layers of fully connected layers. The same data was used to train a cascade of
classifiers to compare with the proposed model. The cascade classifier consists of nodes that
each node is a classifier for the binary classification task. In each node, patches are filtered out
when the scores are below a predetermined threshold. Therefore, patches that survive in the
last node receive the final score of the last patches. The ROC analysis was applied for
the comparison of the two systems. The result showed that the proposed CNN method
outperformed the cascaded classifiers by about 6% mean sensitivities.

In Wang and Yang,151 Wang et al. proposed a context‐sensitive deep neural network that
takes both local features of a microcalcification as well as surrounding tissue background into
consideration. The authors hypothesized that the localized nature of individual micro-
calcifications is desirable for the classifier to obtain the image features within a small region
around the microcalcification. However, the surrounding background of microcalcification is
believed to be beneficial for the suppression of potential FPs. The authors claimed that a direct
application of an image window containing a large area surround the microcalcification would
be problematic given that individual microcalcifications could remain very close to each other.
Therefore, the authors proposed using two image windows as the input to the classifier si-
multaneously, within which one window is for microcalcification feature characterization
while the other is for surrounding image background property description. Two networks,
global subnetwork, and local subnetwork are deployed for feature extraction of surrounding
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background image and microcalcification image. To optimize the global subnetwork structure,
the authors varied the number of convolutional layers from three layers to eight layers gra-
dually. A batch normalization layer and a nonlinearity layer are concatenated for each con-
volutional layer to refine the feature maps. The number of convolutional layers in the local
subnetwork varies from one to four when optimizing the architecture. As a result, 24 variants of
the combined networks are evaluated in the work while the best‐performing variant is chosen

(A)

(B)

(C)

(D)

FIGURE 28 Mammograms of microcalcifications and corresponding ROIs
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for testing. A merged data set, which includes 521 screen‐film mammograms (SFM) images
from 297 cases and 188 full‐filed digital mammogram images from 95 cases, is used for the
research.

By combining image context with deep CNNs, the FP rated was proved to be reduced by the
experiment on the set of 292 mammograms. Among all of the images, 167 cases (300 images)
are randomly portioned into the training set while 67 cases (117 images) and 158 cases (292
images) are used for validation and testing, respectively. To mitigate the inhomogeneity in the
tissue background, a background subtraction step was applied. In the background subtraction
method, each location's background is estimated by calculating the average intensity of a
circular region that takes 7 pixels as the diameter while the location is taken as the center. The
resultant images are then normalized to yield mean zero and unit standard deviation images.
Positive samples are cropped out from mammogram images at each marked microcalcification
location by two windows while 20 negative samples are randomly cropped at the non‐
microcalcification background. The proposed method is then validated on patch‐level for in-
dividual microcalcifications and image‐level for microcalcifications clusters detection in
mammograms. In the experiment of the classification of microcalcification and non‐
microcalcification samples, the best architecture of the context‐sensitive DNN classifier is de-
termined when the numbers of convolutional layers in the global subnetwork and the local
subnetwork are 7 and 4, respectively. For comparison, three models including a unified SVM
detector, a CNN cluster detector, and a local DNN classifier, are introduced. The experimental
results of individual microcalcification detection showed that the FROC of the proposed
context‐sensitive DNN is higher than the compared methods. For the context‐sensitive DNN, a
sensitivity of 79.7% is achieved while the FP rate of 1.03 FPs/cm2. In the second experiment on
detecting microcalcification clusters in mammograms, the same conclusion is drawn that the
model with the best performance proposed method achieved TP as 87.40% while the FP rate of
0.5 clusters/image, which is better compared to 84.6% of the Unified SVM classifier.

Rehman and others153 developed a so‐called intelligent system for the detection of micro-
calcification by integrating DNN. The developed system was designed for two objectives. The
first one is to classify breast cancer into being benign and being malignant based on mam-
mogram images. The second objective of the proposed system was to automatically select ROIs,
which exempts the system's reliance on manual selection of ROIs. The developed system can be
divided into three major phases; within each phase are different subtasks. In the first stage,
noise in the images was reduced, and features were selected for the second stage, which built
the classification model based on three common layers including the convolutional layer,
pooling layer, and fully connected layer for the binary classification task. In the third stage, the
performance of the model and the result were visualized for better understanding. In the work,
1273 mammogram images were analyzed, and the classification accuracy reached 95.6%.
However, details about the feature selection and the architecture of CNNs were missing in
the work.

Wang et al. evaluated deep learning‐based models on large data sets for the detection of
microcalcification in Wang et al.154 The proposed method was trained on the training set
contains 677 benign images and 323 malignant images, which led to 1000 lesions in total, where
each image contributes a lesion. For evaluation, an independent test set including 97 benign
and 107 malignant images was used. Three scenarios, including isolated microcalcifications,
isolated masses, and a combination of microcalcifications and masses, are considered. A deep
learning‐based semi‐automated segmentation method was developed for the three different
scenarios to yield 15, 26, and 41 features, respectively. When microcalcification was considered
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alone, the proposed deep learning‐based discrimination classifier showed an accuracy of 87.3%,
which was slightly higher than the accuracy of 85.8% given by SVM. However, both methods
showed poor performance on the analysis of masses that the accuracy of the two methods was
only 61.3%. Nevertheless, the accuracy of the proposed model and SVM improved to 89.7% and
85.8%, respectively, when the analysis was carried out on the combination of microcalcifica-
tions and masses. Therefore, the experimental results supported the conclusion that deep
learning methods are more superior for the detection of microcalcifications.

Akselrod‐Ballin and others155 proposed a mass and calcifications detection system based on
Faster‐RCNN. The detection framework comprises three stages, which aim at initial detection,
classification, and classification refinement. The input mammogram images are firstly divided
into an overlapping grid for training the deep CNN. In the first stage, a deep FCNN was trained
to detect windows likely to have objects of interest included. In this stage, sliding windows at
the stride of 32 pixels slide over the input images to generate grids. For each grid location, nine
seedboxes in different sizes and aspect ratios are being classified. According to the IoU between
ground truth object boxes, these boxes are labeled as object anchors when IoU is greater than
0.5. Finally, only the boxes with top prediction scores are kept. In the second stage, a faster
R‐CNN detection network is trained to classify potential object windows which survived from
the first stage into the mass, benign calcifications, and malignant calcifications. Here, calcifi-
cations include microcalcifications and macrocalcification, which refers to bigger bits of
calcium. VGGNet is used as the backbone of two networks. The number of windows in the
training phase from the RPN is 2000 while it reduces to 500 during the testing phase. In
the third stage, the TP and FP candidate boxes in the training set are selected to train VGG‐16,
the final classifier to recognize the TP and the hard negatives. The experiment was carried out
on the INbreast data set and an Internal data set with 3500 images, amongst which 750, 360,
and 2400 images are with mass, malignant calcifications, and benign calcification, respectively.
On INbreast, a TPR at 0.4 with 1 FPI was achieved for all of the calcifications. When small
calcifications were excluded, the TPR rose to 0.85, so did FPI to 1.5. A comparison with the
other two methods indicated that the proposed method had shown better performance. A
summary of the microcalcification detection systems is given in Table 8.

5.3 | Other detection scenarios in breast cancer

While mass and microcalcifications are two dominating symptoms for the detection of breast
cancer, there are also other valuable works aiming at detecting breast cancer depending on
other minor symptoms.

Architectural distortion (AD) is the third common yet the most easily to be missed ab-
normality that follows mass and microcalcification. However, it is reported that detection of AD
will be helpful for breast cancer detection.156 To this end, Costa et al. transferred the VGG‐16
network for detection on clinical mammogram data sets with 280 images.157 Positive patches
for training are cropped out from original images where the center of AD is shown in the
patches while negative patches are randomly sampled within the breast area. By doing so, a
patch data set containing 44,224 ROIs with the same number for positive and negative patches
is formed. Data augmentation including rotation, horizontal and vertical flip is carried out
leading to 123,844 ROIs in total. To specify the best training approaches, several VGG‐16
instances are trained in different depths. The best AUC achieved was 0.89 by a network that
was fine‐tuned at a certain level. In another work, Oyelade et al. customized a deep CNN for a
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three‐class classification task that classifies obtained patches from MIAS, DDSM, INbreast into
Normal, Benign, and Malignant categories.158 Data augmentation is applied as well to enhance
the performance of the developed network. Finally, the model was reported with an accuracy of
93.75%. A detailed survey about the detection of AD can be found in Oyelade and Ezugwu.156

Axillary lymph node (ALN) is another common abnormality in scenarios of breast cancer.
The status of ALN is quite helpful for prognosis and therapy decisions. To avoid unnecessary
surgeries for removal of negative ALN, Zheng et. al explored the performance of different deep
learning models on distinguishing N0 status nodes and N+(≥1)status nodes,159 where N0
means the disease‐free axilla while N+(≥1) indicates any axillary metastasis. The involved deep
learning models are ResNet50, ResNet101, InceptionV3, and VGG19 while ResNet50 performed
best among all of them. To further improve the performance of the proposed model, additional
clinical information was added to the second last fully connected layer of the model on basis of
ResNet50, which was termed as ResNet50+C. By doing so, the best performance given by
ResNet50+C achieved an accuracy of 74.6 on an independent test cohort containing 118
images.

Also, mass and microcalcification detection‐oriented systems require a huge size of anno-
tations, which turn out to be expensive and time‐consuming. Therefore, breast cancer detection
systems in weak or unsupervised manners have received wide exploration by researchers in the
field. Lotter et al.,160 proposed an annotation‐efficient deep learning‐based method for the
classification of benign and malignant mammograms. The developed algorithm is trained in a
three‐stage manner, where strong supervision that requires patch‐level annotations is in-
troduced in the first two stages of training. In the substage of the third stage, called stage 3A,
the proposed algorithm outputs scores and bounding boxes for 2D mammograms after being
trained in a weakly supervised manner. In stage 3B, however, the algorithm is extended for 3D
mammograms breast cancer detection that it outputs score, bounding boxes, and slice numbers
in 3D volumes. Finally, the proposed method was reported to beat five breast‐imaging spe-
cialists by an average increase in sensitivity of 14%. Another image‐level breast cancer detection
system can be found in Eskreis‐Winkler et al.,161 where Eskreis et al. deployed CNN to dis-
tinguish cancer‐containing slices from MRI images. On an independent test set containing 706
images, the developed system was reported an accuracy of 92.8% on the binary classification
task while the sensitivity and specificity reached 89.5% and 94.3%, respectively. Other detection
and classification works that are related to breast cancer are listed in Table 9.

6 | ABNORMALITY SEGMENTATION BY CNNS

In this section, our main focus will be CNN‐based works for breast mass and microcalcifica-
tions to maintain the consistency of our survey. However, other segmentation scenarios that
may be beneficial to the detection of breast cancer will be amended as well. Segmentation of
breast mass and microcalcifications is also another important branch for the design of CAD
systems. Effective segmentation of masses and microcalcifications can lead to overall accuracy
improvement while reducing the FP and FN. However, segmentation remains the big challenge
due to the low contrast, ambiguous boundaries, and irregularities in size, location, and
shape.165,166 In breast abnormality segmentation, numerous works deployed classical methods,
but the exploration of utilizing deep learning models is quite limited.167 Compared to tradi-
tional segmentation methods, CNN‐based segmentation methods, mainly FCNNs, turn out to
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be more powerful.70 In this section, we will mainly review segmentation works on mass and
microcalcification by deep learning models.

6.1 | Mass segmentation by FCNNs

Al‐antari and others168 proposed a full resolution convolutional network (FrCN) to implement
segmentation. In the proposed system, masses were firstly detected by the proposed mass
detection module and were fed to the proposed FrCN for segmentation. To enhance the con-
trast of the detected masses, the authors performed the contrast‐limited adaptive histogram
equalization (CLAHE) method, a widely‐used classical image contrast enhancement algorithm.
Compared to FCN, SegNet, and U‐net that used multiple max‐pooling and subsampling layers,
the proposed FrCN removed the max‐pooling and subsampling layers to maintain the full
spatial resolution of the original input. When max‐pooling and subsampling layers in encoder
networks were introduced, the spatial resolution of the feature maps was reduced. Decoder
networks can be used to recover the resolution but will introduce more parameters into
the networks. As a result, segmentation models based on deep learning suffer from the loss of
details. The key modification of max‐pooling and subsampling removal enables accurate pixel‐
to‐pixel mass segmentation by keeping as many details as possible. The FrCN proposed was
based on VGG‐16 with the last three fully connected layers being replaced with three full
convolutional layers, while max‐pooling and subsampling layers were removed. As reported by
the authors, an overall accuracy of 92.97% on detection of mass was produced by the seg-
mentation module while the Dice (F1‐score) of 92.69% and Jaccard similarity coefficient me-
trics of 86.37% are given, respectively.

The level set method,169,170 a traditional image segmentation method, was applied to refine
the segmentation result given by deep structured learning methods in Dhungel et al.138

Dhungel and others138 designed a deep structured network to segment a low‐resolution input
patch. The network consists of two convolutional layers that produce 6 feature maps and 12
feature maps, respectively. For each convolutional layer, a subsampling layer is followed to
reduce the size of feature maps. The output of the input patch, which can be reshaped to
maintain the same size as the input patch, is the possibility map produced by the proposed
CNN model. A further refinement step was carried out by integrating the Chan‐Vese active
contour model 171 on the segmented image. The proposed segmentation method was evaluated
on a subset from INbreast data set. 41 benign masses and 75 malignant masses are included in
the subset, while 60% of them are used for training while the rest are divided into the validation
set and the test set, respectively. The experimental results showed that the proposed method
has a Dice index on the training data at 0.85 ± 0.01, similar to the result at 0.85 ± 0.02 on the
test set.

As one of the most representative deep learning segmentation models, U‐net has been
widely used for breast mass segmentation 1.5,73–174 Li and others172 proposed to use an im-
proved version of U‐Net codenamed Conditional Residual U‐Net (CRU‐Net) that integrated
CRF and residual learning for segmentation of mass. The residual learning serves to improve
the feature extraction while CRF helps to improve the pixel‐level segmentation results. A total
of 290 ROIs from DDSM‐BCRP and INbreast are used in the research. One‐hundred and
seventy‐four of the ROIs are from DDSM‐BCRP while the rest are from INbreast. All of the
ROIs in both data sets are evenly partitioned into the training set and the testing set. Before
segmentation, each ROI is resized to 40 by 40 pixels by bicubic interpolation. The best
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performance on ROIs from DDSM‐BCRP is 91.43 ± 0.02 while it is 93.66 ± 0.10 on the ROIs
from INbreast. Another U‐Net‐based mass segmentation that combines densely connected
networks with attention gates (AG) is proposed by Li and others.173 In the developed method,
the network is comprised of an encoder and a decoder. Dense blocks, which were borrowed
from DenseNet, formed the encoder. The decoder of the proposed network is the decoder of U‐
Net integrated with AGs. The proposed method is tested on the public data set DDSM while the
evaluation metrics are F1‐score, mean IoU, sensitivity, specificity and overall accuracy. As a
result, the proposed method showed an overall accuracy at 78.38 ± 0.04%, which is the highest
one compare to that of the other state‐of‐the‐art methods.

Annotation for breast cancer is a process that not only requires specialty from experi-
enced radiologists but also consumes plenty of time. In situations where only limited an-
notations are available, shape priors can improve the segmentation results. Maicas and
others175 proposed a novel fully automated breast mass segmentation on an MRI data set. In
the proposed method, a deep learning model was introduced to generate shape priors for
the following segmentation module based on globally optimal inference in a continuous
space (GOCS). Mass detection was firstly derived from the method proposed by Dhungel
et al.176 The difference is that the number of cascade stages is reduced while no hand‐
crafted features are used. Finally, the detection method gives a TPR of 0.85 at 3.66 false‐
positive regions per patient. The deep learning model has three convolutional layers within
which 10, 20, and 20 filters are used for gross segmentation, which is later used as the shape
prior for GOCS. The data set comes from 117 patients, where 58 patients who contributed 72
lesions (23 benign and 49 malignant) are partitioned into the training set. Sixty‐nine lesions
(23 benign and 46 malignant) from the remaining 59 patients are used to evaluate the
proposed segmentation method. The mean and median Dice coefficient is used to assess the
accuracy of segmentation on both the training and testing sets. The proposed segmentation
algorithm then showed the mean Dice on the testing set at 0.77 ± 0.14 while the median
Dice is 0.82. More mass segmentation methods have been listed in Table 10.

6.2 | Microcalcification segmentation by FCNNs

Individual microcalcifications are challenging to recognize even for experienced radi-
ologists due to the heterogeneity of breast tissue and the variability. Classical methods, such
as thresholding or morphological filtering, generally use low‐level features, resulting in
unsatisfactory outcomes that even totally fail to work. Therefore, more works focus on the
detection of clusters of microcalcification instead. Segmentation of microcalcifications,
however, does not necessarily have to be embedded in the detection system. As a con-
sequence, limited deep learning‐based works are especially aimed at microcalcification
segmentation tasks.

Valvano et al.177 developed a segmentation system for microcalcification based on CNN,
which was reported to achieve 99.99% accuracy of detection while the false‐positive rate of
0.005% in 283 mammograms. In their work, a CNN detector was designed to classify patches
obtained from mammograms to be positive samples or negative samples before segmentation.
Using the sliding window of N ×N pixels with the stride of N/2, the ROIs were classified into
positive samples if microcalcification was presented, or negative samples otherwise. The au-
thors successfully converted the detection problem into a binary classification problem, which
turned out to be more computational expedient. The CNN architecture of detection and
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segmentation were the same that comprises six convolutional layers with the size of kernels
3 × 3. Each pixel in ROIs was then classified into the foreground that belongs to the micro-
calcification, and background accordingly while the masks provided by radiologists were taken
as ground truth. When training the proposed model, 231 out of 283 mammograms were ran-
domly partitioned into the training set while 25 in the remaining mammograms were built as a
validation set. Finally, the method was examined on the test set that consists of 27 mammo-
grams. While the accuracy of microcalcification segmentation was pretty high, the proposed
segmentation method remains to be tested on larger data sets.

Similar work was presented in Valvano's other work.178 Each pixel in the mammogram
was picked as the center point of a sliding window, which was later passed to the con-
structed deep CNN for binary classification. Therefore, the segmentation problem is con-
verted to a classification problem. According to the classification result, pixels were then
partitioned into microcalcification and non‐microcalcification. The proposed network has
six convolutional layers and three fully connected layers. The size of the input is 99 by 99.
Two‐hundred and thirty‐eight mammograms were used to train and validate the proposed
network while another independent 52 images are used for testing. In contrast to accuracy
at 58% by the classical approach, the proposed method's accuracy reached 83.7% as reported
by the author.

Hossain179 proposed a modified U‐Net in an automatic microcalcification detection system
as the segmentation module. In the detection system, the Laplacian filter is used to improve the
contrast of mammograms as microcalcifications are brighter than surrounding pixels. The
pectoral region is segmented by K‐means pixel‐wise clustering for breast region acquisition. A
fuzzy C‐means clustering algorithm is used to detect the suspicious regions, which are divided
into negative and positive patches. The modified U‐Net has four convolutional layers in the
encoder part, while the input size is 32 × 32. The five cross‐validations method is utilized to
evaluate the developed system. When dividing the data set, 60% of positive patches from the
patch selection procedure are used to train the U‐Net while the remaining 40% of them are
evenly divided into the validation set and the testing set, respectively. Finally, a mean accuracy
at 98.2% with the sensitivity at 98.4%. The remaining measurement metrics are precision

TABLE 11 The state‐of‐the‐art microcalcification segmentation methods

Authors Method Features

Number of images
(or patches) for
evaluation Performance

Gabirele et al.177 DCNN High accuracy 27 Accuracy of 99.99% with a
false‐positive rate
of 0.005%

Gabirele et al.178 DCNN Conversion from
segmentation to
pixel classification

52 Accuracy of 83.7%

Hossain et al.179 Preprocess +
Modified
U‐Net

High accuracy – a mean accuracy at 98.2%,
sensitivity at 98.4%.

Hou et al.180 U‐Net Multitask – a dice coefficient of 0.49
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at 94.7%, F‐measure at 98.5%, Dice index at 97.8%, and Jaccard Index at 97.4%. However,
the details about the size of the data set are missing the work, which is important to an
objective evaluation of the developed system. In Table 11, we summarized the state‐of‐the‐art
microcalcification segmentation methods.

6.3 | Other segmentation scenarios in breast cancer

Pectoral muscle segmentation is crucial to advance the performance of CAD systems.181 For
breast cancer detection, the detection accuracy, and speed can be improved once the breast
region can be restricted to smaller and accurate areas. Therefore, there are also numerous
works aiming at designing novel pectoral muscle segmentation algorithms.181 In,181 Ali et al.
proposed a novel U‐Net codenamed Deep Res U‐Net for pectoral muscle segmentation by
adding skip connections into the network. Also, the activation function has been updated from
ReLU to exponential linear unit (ELU) to avoid dying neurons because of ReLU. Before seg-
mentation, image enhancement is carried out to remove noises by applying different filters.
After trained with images from MIAS, INbreast, and DDSM, the developed network was re-
ported a mean intersection over union (IoU) of 97%, dice similarity coefficient (DSC) of 96%,
and accuracy of 98% on 1974 images using 10‐fold cross‐validation. To compare the perfor-
mance of the deep learning method and the traditional method, called texture‐field orientation
(TFO) method, on segmentation of pectoral muscle, Ma et al. developed three DCNN models
based on U‐Net.182 The performance of the proposed models finally gave a mean percent
overlap area (POA) of 93.7% ± 6.9% while the POA of TFO was only 86.9% ± 16.0%.
Other similar works can be found in Wang et al.183 and Liu et al.184 More pectoral muscle
segmentation works can be found in Moghbel et al.185

The subjective assessment of breast density can serve as a reliable predictor of breast cancer
than other automated or semiautomated methods.186 Dense breast tissues make breast cancer
more difficult being identified and could increase the risk of breast cancer.187 Therefore, seg-
mentation of breast tissue for subjective assessment is also a valuable procedure. To this end,
Saffari et al. developed a so‐called effective conditional generative adversarial network for the
segmentation of dense tissues in mammograms.187 After segmentation, a classification network
was followed to classify the segmented mammograms into one of four classes. Finally, the
proposed deep learning‐based classification demonstrated precision, sensitivity, and specificity
on a test set containing 410 images of 97.85%, 97.85%, and 99.28%, respectively. Compared to
supervised learning, unsupervised learning models are more preferable. Given this, Kallenberg
et al. proposed a novel unsupervised deep learning method that addresses breast density seg-
mentation and mammographic risk scoring.188 In the proposed deep learning model, stacked
convolutional layers are used as a sparse autoencoder to extract features in an unsupervised
manner. A two‐layer neural network was then deployed as the classifier, which was trained in a
supervised manner. Percentage mammographic density, a golden standard in mammographic
density scoring is used as the measurement in this study. The proposed model, which was
named convolutional sparse autoencoder, yielded an AUC of 0.59 on the Dutch Breast Cancer
Screening data set containing 394 cancer cases and 1182 healthy controls. More segmentation
works that are related to breast cancer are listed in Table 12.

204 | YU ET AL.



T
A
B
L
E

12
O
th
er

se
gm

en
ta
ti
on

w
or
ks

re
la
te
d
to

br
ea
st

ca
n
ce
r

A
u
th

or
s

M
et
h
od

P
u
rp

os
e

F
ea

tu
re
s

N
u
m
be

r
of

im
ag

es
(o
r
p
at
ch

es
)
fo
r

ev
al
u
at
io
n

P
er
fo
rm

an
ce

A
li
et

al
.1
81

F
C
N
N

(U
‐N

et
)

P
ec
to
ra
l
m
u
sc
le

se
gm

en
ta
ti
on

N
ov
el

ar
ch

it
ec
tu
re

19
8

A
m
ea
n
In
te
rs
ec
ti
on

ov
er

U
n
io
n
(I
oU

)
of

97
%
,d

ic
e
si
m
il
ar
it
y
co
ef
fi
ci
en

t
(D

SC
)
of

96
%
,
an

d
ac
cu

ra
cy

of
98
%
.

M
a
et

al
.1
82

F
C
N
N

(U
‐N

et
)

P
ec
to
ra
l
m
u
sc
le

se
gm

en
ta
ti
on

N
ov
el

ar
ch

it
ec
tu
re

20
3

M
ea
n
P
O
A

of
93
.7
%
±
6.
9%

So
le
im

an
i

et
al
.1
89

D
C
N
N

(V
G
G
16
)

P
ec
to
ra
l
m
u
sc
le

se
gm

en
ta
ti
on

A
co
m
bi
ne

d
m
et
ho

d
ba
se
d
de
ep

le
ar
ni
ng

an
d
gr
ap
h‐
ba
se
d

im
ag
e
pr
oc
es
si
ng

–
D
ic
e
si
m
il
ar
it
y
co
ef
fi
ci
en

t
(D

SC
)
an

d
ac
cu

ra
cy

(A
C
C
)
on

M
IA

S,
C
B
IS
‐D

D
SM

an
d
IN

br
ea
st

ar
e
97
.2
2
±
1.
96
%

an
d

99
.6
4
±
0.
27
%
,
re
sp
ec
ti
ve
ly
.

K
im

et
al
.1
90

F
C
N
N

(U
‐N

et
)

P
ec
to
ra
l
m
u
sc
le

se
gm

en
ta
ti
on

–
65

A
m
ea
n
se
n
si
ti
vi
ty

of
95
.5
5%

,
m
ea
n

sp
ec
ic
it
y
of

99
.8
8%

,
m
ea
n
ac
cu

ra
cy

of
99
.6
7%

,
an

d
m
ea
n
D
ic
e
si
m
il
ar
it
y

co
ec
ie
n
t
(D

SC
)
of

95
.8
8%

Sa
ff
ar
i

et
al
.1
87

F
C
N
N

(U
‐N

et
)

an
d
D
C
N
N

B
re
as
t
ti
ss
u
e

se
gm

en
ta
ti
on

an
d
cl
as
si
fi
ca
ti
on

H
ig
h
ac
cu

ra
cy
;

41
0

P
re
ci
si
on

,
se
n
si
ti
vi
ty
,
an

d
sp
ec
if
ic
it
y
of

97
.8
5%

,
97
.8
5%

,
an

d
99
.2
8%

.

K
al
le
n
be
rg

et
al
.1
88

D
C
N
N

(S
pa

rs
e

au
to
en

co
de

r)
B
re
as
t
de

n
si
ty

se
gm

en
ta
ti
on

U
n
su
pe

rv
is
ed

–
A
n
A
U
C

of
0.
59

D
al
m
ış

et
al
.1
91

F
C
N
N

(U
‐N

et
)

B
re
as
t
an

d
fib

ro
gl
an

du
la
r

tis
su
e

se
gm

en
ta
tio

n

M
u
lt
ip
le

st
ag
e

se
gm

en
ta
ti
on

22
T
h
e
h
ig
h
es
t
D
SC

of
0.
94
4

Z
h
an

g
et

al
.1
92

F
C
N
N

(U
‐N

et
)

B
re
as
t
an

d
fi
br
og
la
n
du

la
r

ti
ss
u
e

se
gm

en
ta
ti
on

Im
pr
ov
ed

U
‐N

et
w
it
h

re
si
du

al
le
ar
n
in
g

22
4

T
h
e
m
ea
n
D
SC

w
as

0.
86

±
0.
05

fo
r
br
ea
st
,

0.
83

±
0.
06

fo
r
F
G
T
;
an

d
th
e
m
ea
n

ac
cu

ra
cy

w
as

0.
94

±
0.
03

fo
r
br
ea
st

an
d

0.
93

±
0.
04

fo
r
F
G
T

YU ET AL. | 205



7 | REMAINING CHALLENGES AND FUTURE TRENDS

The remaining challenges in designing breast cancer CAD systems come from aspects of data
sets and the intrinsic issues with deep learning models.

The available large‐scale annotated data sets are still challenging. The number of large‐scale
data sets that provide combinational ground truth and correct annotations is still limited. The
reason behind this could be the expensive costs during image acquisition and maintenance.
Also, it was pointed out in 197 that the current corpus is leaning toward mass detection. As a
result, the related works are skewed as well. Therefore, it would be more beneficial to the
development of breast cancer CAD systems if there were much more balanced and large‐scaled
data sets. To train CNNs to achieve high performance, the number of samples should be large
enough though there are semi‐ or unsupervised systems aiming at mitigating the situation.
However, the performance of semi or unsupervised systems is still not comparable to systems
trained in a supervised manner. Besides, the ground truth should be provided in systematic
ways while the annotations should not be subjective. Corresponding accurate annotations for
different tasks are of great importance, given the difference between different tasks such as
segmentation and classification. As shown in some databases,37,43 annotated ROIs, which are
denoted by circles around pixels of interest, are not appropriate to be the ground truth for
segmentation. To avoid subjectivity, different radiologists should be involved to contribute to
relatively objective annotations. While some data sets are well annotated, only a limited
number of data sets are publicly available. Given the above difficulties, few databases meet all
of the listed requirements. To cope with insufficient data sets for training and evaluating
deep learning models, techniques such as transfer learning and data augmentation are
developed.193,194 For transfer learning, there are numerous works that transfer models pretrained
on nonbreast or even nonmedical images while limited research investigated knowledge trans-
ferring from one medical image modality to breast cancer or from one breast cancer data set to
another. This could be one of the future directions for transfer learning. Similarly, there are also
works exploring new data augmentation methods.111 To summary, available large‐scale anno-
tated data sets could be the most straightforward yet challenging solution to the challenge.

Another challenge is the intrinsic problems with deep learning models that prevent the
development of these models. While most systems based on deep learning outperformed sys-
tems based on traditional methods, modern CAD systems' overall performance is still far from
satisfactory. For mass detection, how to effectively detect masses that are surrounded by dense
tissues needs to be addressed by more intelligent deep learning algorithms. Moreover, for deep
learning algorithms, a combination of domain knowledge with deep learning would provide a
more interpretable understanding and better reasoning behind the direct convolutional op-
erations. Also, determining which deep learning architectures can achieve high accuracy while
remaining computationally reasonable, is another aspect of interest to improve CAD systems'
performance. Therefore, future breast cancer CAD systems will benefit a lot from the upgraded
deep learning models such as attention‐based models.195

Interpretability has long been an obvious flaw to denounce deep learning models as these
models are more like black boxes rather than meaningful hand‐crafted features in traditional
CAD systems. To address this, deep learning works for visualization have been developed.196,197

So, future works for breast cancer CAD systems are more likely to embed these frameworks for
better interpretation of the models.
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8 | CONCLUSION

This paper simply reviewed the works on CAD systems for breast cancer. Concerning the hot
topics, systems that focused on detection, segmentation, and classification of mass and mi-
crocalcification are covered in this paper. The popular mammographic databases were well‐
introduced at the beginning of this paper because they were an indispensable part of the
evaluations of CAD systems. Some basic concepts about deep learning were recapped for a
better understanding of CNNs. Traditional CAD systems have been introduced to make com-
parisons between conventional CAD systems and deep learning‐based systems. As can be
concluded, transfer learning is a popular technique when it comes to breast mass and calci-
fication classification while the state‐of‐the‐art detection frameworks are still taken as the
leading method for mass and calcification detection. While CNNs are widely used in solving
classification and detection problems, FCNNs are generally deployed for segmentation tasks.
However, we found that segmentation works regarding mass significantly outnumbered the
works on calcification as mass detection and classification tend to more interesting in the area.
In conclusion, deep‐learning‐based methods have become a predominating choice in the im-
plementation of breast cancer CAD systems. There are also some limitations of this survey
paper. One is that we only focused on CAD systems for breast mass and calcification analysis
but missed other topics such as breast density and breast asymmetry, which relatively lack
attention in the area. Another is the coverage of this survey is still limited. While we aimed at
presenting details of CAD systems, there are still considerable meaningful works that are out of
our reach.
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